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Hallmarks of learning a new skill include a substantial reduction 
of movement variability and a concomitant reduction in both the 
extent and variability of neural firing1–7. This process is associated 
with increasingly sparse task-related neural activation patterns5–8. A 
theoretical framework for the underlying computation is frequently 
labeled the ‘credit assignment’ problem, that is, determination of 
how a single neuron in a highly interconnected biological network 
causes a behavior9,10. Past work has suggested that a key goal of credit 
assignment is to select neural activity that truly reflects the causal 
neuron-behavior relationship8,11. However, it remains unknown how 
a complex and interconnected biological neural network can solve 
this computation.

We hypothesized that sleep-dependent reactivations might be 
important for network credit assignment. A large body of work 
indicates that sleep is important in memory consolidation12–14. 
More specifically, reactivation of neural activity during sleep has 
been implicated in memory consolidation12,14–17. However, there 
has been a great deal of debate regarding the specific computational 
role of such reactivations12–14. Two commonly cited possibilities are 
that sleep-dependent reactivations lead to a general strengthening 
of functional connectivity or a process of renormalization with both 
strengthening and weakening of functional connectivity12,14,18. In the 
case of renormalization, a theoretical prediction is that, after a period 
of sleep, there may be rescaling of task-related activity (for example, 
neural activations not causally linked to performance are selectively 
downscaled)18. Notably, such a process of rescaling of task activations 
could be used for network credit assignment.

Here we used a neuroprosthetic-learning task, in which the 
‘decoder’ and the causality of the neuron-behavior relationship are 
set by the experimenter8,11,19–24, to evaluate whether NREM sleep 
has a role in credit assignment. Unlike natural motor behaviors,  

neuroprosthetic control offers a unique method for studying plastic-
ity; a small set of neurons is chosen to causally control actuator move-
ments (that is, ‘direct’ neurons)8,19. In contrast, ‘indirect’ neurons 
show task-related activity even though they do not cause actuator 
movements8,11,25. Notably, although past work has shown that learn-
ing proficient control through putative error-correction processes 
leads to increased activity of direct neurons and diminished activ-
ity of indirect neurons8,11,20,25,26, it remains unclear how and when 
this fundamental credit-assignment process is solved. We found that 
neural spiking triggered by slow oscillations during sleep is essential 
for credit assignment.

RESULTS
Rescaling of task activity
In five rats implanted with microwire arrays in primary motor cortex 
(M1), we monitored sets of direct (TRD) and indirect (TRI) neurons 
during the initial learning (hereafter referred to as BMI1), during a 
period of sleep and during subsequent task performance following 
awakening (hereafter referred to as BMI2). A linear decoder with ran-
domized weights converted the firing rates of two randomly chosen 
TRD neurons into the angular velocity of the actuator. The decoder 
weights were held constant during the session to exclusively rely on 
neural learning. Notably, there has been a study demonstrating that 
decoder adaptation can still induce long-term plasticity27. However, 
this study was done in non-human primate models performing more 
complex tasks. In our experiments, rats were trained to control the 
angular velocity of a feeding tube via modulation of neural activity. 
At the start of each trial, the angular position of the tube was set to 0° 
(P1; Fig. 1a,b). If the angular position of the tube was held for >300 ms 
at position P2 (90°), a defined amount of water was delivered (that is, 
a successful trial); a trial was stopped if this was not achieved within 
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15 s. Over a typical 2-h session, animals were able to learn the task. 
Consistent with previous results23, after a period of NREM sleep, 
task performance improved at the start of BMI2 (also referred to as 
BMI2Early; Fig. 1c; P < 0.05 for each of the ten individual comparisons 
of BMI1Late and BMI2Early; overall paired t test, t9 = 7.62, P < 10−4).

We next compared the activity of TRD and TRI neurons during task 
performance immediately before and after sleep (that is, intervening 
sleep or Sleeppost, duration: 36.94 ± 1.06 min, mean ± s.e.m., n = 10 
sessions; paired t test of Sleeppre and Sleeppost durations: t9 = 0.056,  
P = 0.95). We specifically measured the change in the peak-firing rate 
during task performance relative to the baseline rate before the ‘GO’ 
cue (that is, ‘modulation depth’ or MD). The majority of TRD cells 
increased their modulations (~67%), whereas a majority of TRI cells 
reduced their modulation (~90%). Notably, although TRD neurons 
experienced a slight, but significant, increase in modulation depth 
(7.39 ± 5.89%, Wilcoxon signed-rank test, Z = −1.81, P = 0.03), there 

was a substantial net decrease in the MD of TRI neurons (−31.76 ± 
2.18%, paired t test, t104 = 14.58, P < 10−26) (Fig. 1d,e). In addition, 
we found that the time spent in sleep predicted the extent of TRI 
downscaling (Spearman correlation, r = −0.71, P < 0.05).

Changes in functional coupling during sleep
We next compared the changes in functional connectivity in the 
recorded M1 neural ensembles during NREM sleep epochs before and 
after training. We specifically calculated the magnitude of spike-spike 
coherence (SSC) for TRD – TRD and TRD – TRI pairs both during the 
sleep that followed training (Sleeppost) and the sleep that preceded 
training (Sleeppre). The SSC is a pairwise measure of how phase- 
locked two neurons are across of frequencies28. For TRD – TRI, pairs, 
the TRD neuron with stronger task-related modulation was chosen for 
SSC calculation relative to the other TRI neurons. We observed that 
the Sleeppost SSC curves for TRD – TRD unit pairs showed a significant 
increase in the 0.3–4-Hz band (Fig. 2a); this frequency band reflects 
slow-oscillatory activity during NREM sleep13,14. At the population 
level, these increases were greater for TRD – TRD pairs than for TRD 
– TRI pairs (129.78 ± 10.29% increase for TRD − TRD pairs and 56.30 
± 4.73% increase for TRD– TRI pairs; unpaired t test, t121 = 6.95, 
P < 10−7). We observed no significant differences near the spindle 
band (8–20 Hz) or ripple (100–300 Hz) frequency bands (data not 
shown). This indicates that the decoder-coupled direct units (that is, 
TRD– TRD) were significantly more likely to fire synchronously dur-
ing slow oscillations in relation to their coupling with indirect units 
(that is, TRD– TRI) during Sleeppost. We also found that the firing rate 
of the neurons did not significantly change between the two epochs 
(mean firing rate for the two epochs: 6.54 ± 0.66 to 6.62 ± 0.64 Hz, 
paired t tests, TRD neurons: t17 = −1.65, P = 0.11; TRI neurons: t104 = 
0.049, P = 0.96). This may be consistent with a recent study regarding 
the firing changes in NREM29, where firing rate changes were evident 
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Figure 1  Rescaling of task activations after sleep. (a) The practice sessions 
were separated by a block of sleep. Rats learned direct neural control of a 
feeding tube (θ = angular position). Successful trials required movement 
from P1 to P2 within 15 s. (b) A typical trial structure is depicted.  
(c) Comparison of trial times. A significant reduction in completion time 
was found between BMI1Late to BMI2Early (n = 10 sessions; paired t test, 
t9 = 7.62, *P < 10−4). Bar plot shows mean ± sem. (d) At the top are the 
waveforms and inter-spike interval histograms of the neurons analyzed 
below (color coded). Plot below shows the trend in the modulation depth 
ratio (MDratio) during BMI performance for three neurons before and after 
sleep. Another neuron whose waveform is not shown is depicted in green. 
Shown below are the PETHs from BMI1Late and BMI2Early trials for the 
TRD and TRI neurons, respectively (in same color convention). Thick line 
represents mean; shaded area is the jackknife error. Below the PETHs are 
representative spike rasters from multiple trials. Red dot indicates task 
completion time for each trial. (e) Average modulation depth change (MD∆) 
between BMI1 and BMI2 (mean in solid line ± s.e.m. in box; unpaired t 
tests; BMI1 and BMI2Early, t121 = 6.79, **P < 10−9; BMI1 and BMI2Late, 
t121 = 6.31, ***P < 10−8; BMI1 and BMI2, t121 = 6.96, **P < 10−9).
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Figure 2  Changes in functional connectivity of direct neuronal pairs  
and reactivation microstructure. (a) Example plot of SSC as a function  
of frequency during sleep before (Sleeppre) and after (Sleeppost for  
TRD – TRD; red for TRD – TRI pairs) skill acquisition. The lighter  
band is the jackknife error. The box highlights the 0.3–4-Hz band.  
(b) Relationship between SSC change before and after learning, and 
change in task-related modulation after sleep, MD∆(BMI1Late to BMI2Early), 
Spearman correlation, r(123) = 0.51, P < 10−8. (c) Average modulation 
depth during reactivations (MDreactivation, that is, ratio of peak to tails) of 
TRD neurons from Sleeppre to Sleeppost. (d) MDreactivation of TRI neurons 
from Sleeppre to Sleeppost. (e) Average modulation depth during Sleeppre 
to Sleeppost reactivations for TRD and TRI neurons (mean in solid line ± 
s.e.m. in box, one-way ANOVA, F3,242 = 34.28, P < 10−17; significant 
post hoc t tests, *P < 0.05).
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during certain phases of sleep and with monitoring of firing rates 
during the entire sleep period.

We next asked whether individual pairwise changes in post-learn-
ing functional connectivity could predict rescaling. As indicated 
above, for each neuron we calculated a single SSC value by using a 
single TRD neuron as a ‘reference’. Thus, we examined whether the 
specific changes in SSC could predict the MD changes for TRD and 
TRI units from BMI1 to BMI2 (Fig. 2b). Notably, we found that SSC 
changes were a strong predictor for rescaling (Pearson correlation, 
r = 0.51, P < 0.05), indicating that functional connectivity changes 
during sleep could account for the changes we observed in task acti-
vations after sleep.

We also examined whether the precisely temporal pattern of spik-
ing (that is, microstructure) of sleep reactivations23,30,31 could also 
predict rescaling. In contrast with the general functional connectivity 
analysis, this approach is based on the detection of temporally precise 
‘reactivation events’ that reflect the firing patterns that emerge with 
learning23,30,31. Notably, we previously found that such reactivation 
events are also tightly related to slow oscillations23. We specifically 
used principal components analysis to create a template to reflect the 

ensemble activity that emerged with learning23,30,31. Subsequently, 
we evaluated the instantaneous reactivation strength during the two 
sleep epochs. We further measured the microstructure by binning the 
neural activity identified using reactivation analysis (that is, using 
coarser time bins of 50 ms) with smaller time bins of 5 ms. In prin-
ciple, it is possible that the average microstructure of reactivations 
could resemble activity during BMI1, resemble activity during BMI2 
or evolve over time during sleep. Detailed analysis of the identified 
reactivation events revealed that there was no evolution of patterns 
in sleep (data not shown).

We next examined whether the microstructure of reactivation 
events more closely resembled task-activity during BMI1 or during 
BMI2. We therefore examined the specific modulation of TRD and 
TRI neurons during the high-percentile reactivation events (Online 
Methods). We found that, at the population level, modulation of 
TRD neurons was significantly greater around the reactivation events 
than for TRI, thereby resembling the task activations evident dur-
ing BMI2. In other words, the identified reactivation events did not 
resemble BMI1, where there was similar modulation of TRD and TRI. 
Modulation of TRD neurons was also greater than in Sleeppre, whereas 
they remained unchanged for the TRI population from Sleeppre to 
Sleeppost (one-way ANOVA, F3,242 = 34.28, P < 10−17; Fig. 2c–e). Such 
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increased modulation was not apparent in randomly selected parts 
of Sleeppost (unpaired t test, t121 = −0.69, P = 0.49; Supplementary 
Fig. 1). Taken together, these results suggest that, after learning, 
firing patterns generated by sleep reactivations resemble, on aver-
age, the rescaled pattern. Notably, at the level of single neurons, 
the depth of modulation during reactivations (Fig. 2c–e) predicted 
how a neuron changed its task-related firing rate during BMI2 (that 
is, significant relationship between lack of firing during reactiva-
tions and downscaling of task activity, linear regression, R2 = 0.17,  
P < 10−5; Supplementary Fig. 2). Thus, we found that direct task-
related units fired more coherently during sleep, as indicated by the 
elevated SSC, as well as more robustly around reactivations, and their 
relative modulation depth were significantly greater than for indirect 
units during task performance in BMI2.

The role of reward
What determines the microstructure of reactivations? We first com-
pared the differences between TRD and TRI firing during BMI1; it 
was difficult to distinguish the two populations on the basis of the 
evolution of firing patterns locked to trial onset (Fig. 3). However, 
given that recent studies have suggested that neural activity linked to 
reward can be preferentially reactivated32–34, we also compared activ-
ity patterns locked to reward delivery. Notably, we found that it was 
substantially easier to distinguish the two populations in this ‘frame of 
reference’; TRD neurons showed a more robust and consistent modu-
lation around reward (Fig. 3a). We quantified this by comparing the 
activity of pairs of neurons around task start and before reward. The 
peak modulation depth ratio for TRD neurons around task start versus 
task end was significantly different (16.20 ± 0.96 versus 26.25 ± 1.24,  

respectively, paired t test, t17 = −6.81 P < 10−5). On the other hand, the 
modulation depth of TRI neurons did not significantly vary between 
the two frames of reference (13.84 ± 0.45 versus 12.86 ± 0.26, respec-
tively, paired t test, t104 = 1.95, P = 0.053).

In general, we also noted that there was an apparent reduction in 
the variability of firing patterns for TRD neurons as opposed to TRI 
neurons associated with task completion. We quantified changes using 
the Fano factor (FF) method35,36, which is a statistical measure of the 
trial-to-trial variability of neural firing. We found that TRD neurons 
had the lowest FF at task end, which coincided with reward (Fig. 3c). 
These values were lesser than for task start of successful trials, and 
even lower than for task start of unsuccessful trials. Notably, when 
we matched for firing rates between the two frames using a subset 
of the neurons, we still observed the same decline in FF for the TRD 
neurons in the task completion frame (TRD neurons’ FF: 0.37 ± 0.007 
and 0.68 ± 0.016 for the task end and task start frames, respectively; 
TRI neurons’ FF: 0.71 ± 0.002 and 0.62 ± 0.002 for task end and task 
start, respectively; one-way ANOVA, F5,350 = 41.20, P < 10−32). This 
suggests that the consistency of neural firing relative to reward may 
be an important determinant of rescaling.

To specifically dissociate task completion from reward, we per-
formed ‘variable reward’ experiments (BMIvariable-reward) in which we 
uncoupled task completion from reward (Fig. 3b). This is contrasted 
from experiments that we outlined above in which the reward was 
delivered at a fixed interval after task completion (BMIfixed-reward). 
More specifically, the water was delivered after a variable delay of 
1–3 s after trial completion. Although the animals could learn the 
task (30.62 ± 6.47% improvement from BMI1Early to BMI1Late; paired 
t test, t3 = 4.46, P < 0.05), we did not observe significant performance 
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gains from BMI1Late to BMI2Early
, as typically seen in BMIfixed-reward  

trials (Fig. 1c). Notably, we also did not observe the rescaling  
effect; the change in modulation depth from BMI1Late to BMI2Early  
was 14.03 ± 7.89 and 3.35 ± 2.31% for TRD and TR populations, 
respectively (paired t test, t5 = −1.95, P = 0.10 for TRD; t40 = −1.46, 
P = 0.15 for TRI).

We then used these experiments to assess whether our observed 
changes were truly related to reward or simply task completion. For 
BMIvariable-reward experiments, we no longer observed the reduction 
in FF for TRD neurons at task completion (one-way ANOVA, F3,166 = 
83.86, P < 10−32, post hoc t test, P < 0.05; Fig. 3c). Moreover, they were 
indistinguishable from indirect neurons. Together, these data suggest 
that the lack of a temporally precise link between task completion and 
reward alters the differential modulation of the two populations previ-
ously seen. We then examined how the firing patterns of individual 
neurons changed for each of these two frames. We calculated the 
pairwise correlation between the sets of neurons during either trial 
start or trial end. Consistent with our hypothesis, the correlated firing 
between pairs of TRD – TRD and TRD – TRI neurons was significantly 
different for the reward-based frame for the BMIfixed-reward relative 
to the BMIvariable-reward condition (pairwise correlation; one-way 
ANOVA, F7,304 = 8.36, P < 10−8, post hoc t test, P < 0.05; Fig. 4a).

What is the effect of reward on reactivations? We found that neural 
co-firing in the reward frame could strongly predict the microstruc-
ture of reactivations for the BMIfixed-reward experiments (R2 = 0.54,  
P < 10−21; Fig. 4b); this relationship was not significant relative to task 
start (Spearman correlation, r = 0.12, P = 0.19) or for the BMIvariable-

reward experiments (R2 = 0.07, P > 0.05; Fig. 4c). Taken together, our 
results indicate that firing patterns found in reactivation events are 
most closely related to the consistency of neural firing relative to the 
time of reward.

Closed-loop inhibition of spiking activity during slow 
oscillations
We next used closed-loop optogenetic methods to evaluate the causal 
role of the changes in sleep37 functional connectivity in triggering 
both the offline performance gains and rescaling. We injected five 
rats with Jaws, a red-shifted halorhodopsin that is a potent silencer 
of neural activity38. After a period of several weeks, we performed 
a second surgery to implant microwire arrays attached to a cannula 
for fiber optic stimulation. The animals showed robust expression of 
Jaws and ~60% neurons responded to optical stimulation by reduc-
ing firing (~43% average reduction; Fig. 5a–c). Using each animal as 
its own control, we compared the effects of either allowing normal 
sleep (n = 8 sessions; OPTOOFF) or conducting closed-loop pertur-
bations (n = 11 sessions; OPTOUP) to decouple spiking activity dur-
ing UP states (that is, activated states hallmarked by neural firing 
during NREM sleep; Fig. 5b)14,39. We considered each session from 
a given animal as an independent observation. Optogenetic inhibi-
tion during OPTOUP experiments was specifically triggered during 
slow oscillations either by simple thresholding of filtered local field 
potential (LFP) during UP states (n = 8) or thresholding of power in 
the slow-wave band (n = 3; Online Methods). For the OPTODOWN 
experiment, we exclusively used the filtered LFP to trigger the LED 
(Fig. 5d). These experiments were randomly interleaved among the 
animals. For the optogenetic experiments, we selected TRD cells that 
responded to optical stimulation with reduced firing. Figure 5b,c 
shows examples of a TRD neuron with normal firing during Sleeppre 
and suppressed firing during optogenetic stimulation linked to UP 
states (Sleeppost; population averages; Fig. 5c). The stimulation pulses 
during OPTOUP and OPTODOWN experiments had similar incidences 

(Supplementary Fig. 3a) and proportion compared with total time 
spent in sleep (Supplementary Fig. 3b). All rats tolerated this manip-
ulation without affecting total duration of sleep when compared with 
the OPTOOFF group (Supplementary Fig. 4). Furthermore, there 
were no quantitative changes in sleep power across the three condi-
tions (Fig. 5e,f).

We observed significant worsening of performance only in the 
OPTOUP experiments (Fig. 6a,b). Figure 6a shows two examples of 
learning following pre- and post-sleep from two sessions in the same 
animal. Typically, we observed a worsening of performance relative 
to the end of the previous session in OPTOUP experiments, but the 
performance level was still better than that observed in the earliest tri-
als. This was not the case with respective OPTODOWN and OPTOOFF 
experiments. Taken together, these experiments suggest that decou-
pling of spiking during the UP states of slow oscillations is sufficient 
to prevent offline gains. This also strongly suggests that such a process 
is activity dependent and appears to at least require the local firing 
of action potentials during sleep. In addition, we also found that the 
performance worsening in BMI2 in the OPTOUP experiments was 
associated with increased firing variability of TRD neurons in both 
task-start and task-end frames of reference and was comparable to 
that of TRI neurons (TRD neuron FF: 1.04 ± 0.04 and 1.11 ± 0.08 at 
task end and task start, respectively; TRI neuron FF: 1.07 ± 0.017 and 
1.09 ± 0.02 at task end and task start, respectively; one-way ANOVA, 
F3,220 = 0.44, P = 0.72; P > 0.05 for all post hoc multiple comparisons). 
This was not the case after robust learning sessions in which TRD 
neurons were associated with a significant reduction in FF at task 
end (Fig. 3c).

Optogenetic inhibition and rescaling
We next examined the extent of rescaling for the three experimental 
groups. Sessions with OPTOUP stimulation did not demonstrate res-
caling of task activity in BMI2, whereas the OPTODOWN and OPTOOFF 
conditions resulted in the expected rescaling of TRI neurons as previ-
ously observed (Fig. 7a). Furthermore, we evaluated neural dynamics  
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using spike-field coherence (SFC, see Online Methods regarding equal-
izing the number of spikes); SFC was significantly reduced for TRI 
neurons from Sleeppre to Sleeppost in the OPTOUP group (Fig. 7b,c).  
Finally, we also assessed whether the extent of the average SFC change 
(∆SFCmag from Sleeppre to Sleeppost) of TRD neurons could predict 
the extent of the rescaling of TRI neurons from BMI1 to BMI2 (MD∆). 
Notably, we found a significant relationship between changes in the 

SSC and the rescaling phenomenon (R2 = 0.66, P < 10−6; Fig. 7d). 
Together, these results suggest that our measured changes in sleep 
functional connectivity after learning may be required for the per-
formance gains, the reduced variability of direct neurons and the 
rescaling of task-related activity.

DISCUSSION
In summary, we found evidence for rescaling of task-related neural 
activity after a period of NREM sleep. We specifically found selec-
tive downscaling of TRI neural populations (that is, non-causal) in 
comparison with TRD neurons (that is, causal) during task perform-
ance after NREM sleep. Our results further reveal how individual 
TRD and TRI neurons might be chosen for downscaling; we found 
that patterns of activity during sleep were predictive of task-related 
rescaling. During task practice, activity patterns that were most con-
sistently related to rewarded outcomes matched the microstructure of 
reactivations. A more gross measure of neural firing linked to slow-
oscillatory activity (that is, SSC in 0.3–4-Hz band) could also predict 
rescaling. Finally, we found that closed-loop optogenetic suppression 
of neural spiking during UP states prevented both performance gains 
and rescaling. Together, our results suggest that NREM sleep has an 
essential role in determining task-related functional connectivity that 
reflects the causal neuron behavior relationship. A net result of this 
process is to assign network credit assignment and to create sparser 
patterns of task-related activity.

Rescaling and sleep-dependent memory processing
Two commonly cited possibilities for the role of sleep in memory 
consolidation are a general strengthening of synaptic connectivity 
and a process of renormalization with net weakening of synaptic 
connectivity12,14,18. In the former, sleep is noted to have an active 
role in strengthening memories through enhanced local and distant 
connectivity, thereby resulting in systems consolidation. In contrast, 
in the latter, renormalization of synaptic strengths is believed to 
restore synaptic homeostasis and thereby benefit memory functions. 
It is worth noting that both processes could occur, but may operate 
over distinct timescales during long periods of sleep14. For example, 
recent evidence suggests that sleep is important for both pruning and 
growth of new spines40–42. Functionally, this could account for both 
the increases and decreases in neural firing after sleep29. Notably, a 
theoretical prediction is that synaptic renormalization may lead to 
rescaling of activity18; to the best of our knowledge there is no direct 
evidence of this. For natural learning, assessment of task-dependent 
renormalization is likely to be difficult given that the causality of 
neural activity to behavior is largely still unknown.

Neuroprosthetic learning allows us to readily distinguish neural 
activity that is causal for actuator movements (that is, TRD) versus 
activity that is non-causal. Using this task, we found evidence of res-
caling of task activity; specifically, that the task-related modulation 
of causal neurons were slightly, but significantly, enhanced, whereas 
non-causal neurons showed selective downscaling of task-related 
modulation. Although our specific experiments do not allow us to 
make conclusions regarding changes in synaptic strength, they do 
reveal that sleep-dependent processing can rescale task-dependent 
activations. At the very least, our results suggest that sleep-dependent 
processing does not exclusively strengthen functional connectivity, 
as assessed by task-related neural firing. Moreover, given that we also 
found a small, but significant, improvement in task performance as 
well as increased modulation of direct task-neurons, we cannot not 
exclude the possibility that a strengthening process may also simul-
taneously occur. Our experiments using optogenetic suppression of 
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spiking during the UP states suggests that our observed rescaling is 
driven by an activity-dependent process. Thus, our results also sug-
gest that reactivations during sleep may be involved in a process of 
rescaling of task activity; this notion is also broadly consistent with 
predictions that renormalization may rely on the synchronous activity 
evident during slow oscillations18.

Neuroprosthetic memory consolidation and slow oscillations
Our closed-loop optogenetic manipulation was triggered by phases of 
slow oscillations during sleep. We found that, although suppressing 
neural spiking during UP state (Fig. 5b,d) perturbed sleep-dependent 
effects, similar perturbations in the DOWN state did not have detect-
able effects. This suggests that the spontaneous reactivation of both 
task- and non-task-related neurons during UP states is required for 
sleep-dependent gains. Notably, our intervention did not appear to 
grossly affect sleep duration or the power spectrum of sleep. However, 
it is still possible that other known processes that are linked to slow 
oscillations might be involved. For example, it is known that spindles 
are associated with activity during UP states13,14. Although we did 
not detect gross changes in power, it is still possible that disruption of 
spiking during slow oscillations could affect spindles. Moreover, there 
is also a known link between cortical slow oscillations and hippoc-
ampal ripples13,14. Future studies can elucidate how other processes 
might contribute to consolidation after learning.

Our results further suggest that both performance gains and res-
caling are regulated by spiking activity linked to slow oscillations. 
More specifically, NREM sleep appears to have a threefold effect on 
neural activity and performance. First, there was a significant effect 
of enhanced performance. Second, there was a slight, but signifi-
cant, increase in the modulation depth of TRD units. Finally, there 
was downscaling of TRI activity. The latter two appear to be related 
to a rescaling effect in which the two populations are differentially 
modified. Our OPTOUP intervention affected both performance gains 
and the rescaling effect. Although it might seem that the modula-
tion depth of TRD units was still increased, we observed a significant 
increase in task-related variability for TRD. Such enhanced variability 
may reflect poor consolidation of task-activity patterns and underlie 
the degradation of performance after the OPTOUP intervention. It 
can be likened to ‘erosion’ of memory, where rats forgot the neural 
activity pattern in BMI1 and had to relearn the task again. Together, 
this suggests that rescaling of the two neural populations may occur 
simultaneously during UP states.

The SSC analysis shown in Figure 2 suggests that the precise rela-
tionship between rescaling and SSC may be complex. There are at 
least three reasons why we measured a general increase in SSC in the 
setting of a largely selective enhancement of direct neurons. First, it 
is possible that there is an elevated threshold for plasticity. In other 
words, the intercept of our linear regression line suggests that the 
zero crossing (that is, the threshold for enhancement) is for values 
greater than a zero change in SSC. Second, it is possible that the gen-
eral increase in SSC represents active processing of both populations 
during slow oscillations. In this view, the system might actively sample 
both weak and strong functional connectivity to ultimately determine 
credit assignment. Such active sampling would appear to result in a 
general increase in SSC. It is also worth noting that for hippocampal 
replay, there may be dissociation between the external experience and 
internal processing43. Thus, third, it is also possible that the elevated 
SSC represents a schema for internal representation that is not strictly 
related to the actual awake experience.

Our results might also suggest that both performance gains 
and rescaling are optimized by the same mechanisms. However, 

it is still possible that there is differential regulation of these two 
aspects of task performance. In both rodent and non-human pri-
mate models of neuroprosthetic learning, there is a dissociation 
between performance gains and rescaling8,23. For example, at the 
end of a typical practice session there were performance gains 
in the absence of rescaling (that is, firing of non-causal activity). 
Similarly, past work in non-human primates has indicated that res-
caling can take days to occur, even in the presence of performance 
gains; the task used was substantially more complex than the one 
we used for rodents. This suggests that performance gains do not 
absolutely require rescaling. In our experiments, however, we found 
that sleep-dependent performance gains and rescaling were evident  
after a period of sleep. Moreover, disruption of spiking linked to slow 
oscillations resulted in both degradation of performance and res-
caling. This suggests that sleep-dependent processing co-regulates  
both processes. However, given that sleep is a collection of hetero-
geneous and non-stationary phenomena12,14, it is still quite pos-
sible that these two aspects can be dissociated. For example, our 
optogenetic intervention did not specifically examine the role of 
spindle activity that is coincident with slow oscillations (as opposed  
to all spiking linked to it). Future work can help to determine 
whether performance gains and rescaling are always co-regulated 
during sleep.

Role of reactivation in credit assignment
Our analysis specifically found that the timing of task activity rela-
tive to reward may determine credit assignment. Especially during 
‘early learning’, co-firing of direct and indirect neurons occurred 
over multiple seconds. It is likely that the animals were exploring 
patterns of neural activity that could successfully complete the task. 
Notably, traditional task-related peri-event time histograms (PETHs) 
for neuroprosthetic performance are calculated on the basis of trial 
start; this is also typical for natural learning31,35. However, based 
on the extensive history on the role of reward in learning32–34, we 
also examined PETHs that were associated with task end and reward 
delivery. Notably, the frame relative to reward was most predictive of 
rescaling and sleep-related reactivations. We also found that when 
we perturbed the link between reward and task completion (the vari-
able reward experiments; Figs. 3 and 4) we no longer observed these 
phenomena. Together, these results are consistent with the growing 
notion that the patterns and extent of reward shapes learning and 
offline processing10,44.

What might be a computational role for our observed rescaling of 
cortical activity and its association with reward? In general, reward-
related reactivation may be a broad mechanism for learning and 
remembering experiences that lead to successful outcomes32–34,45. 
More specifically, the observed optimization of functional connec-
tivity during sleep may provide important insight into the biological 
implementation of reinforcement learning, a widely studied theo-
retical and experimental model for reward-based learning10,44. In 
reinforcement learning, there is a noted tradeoff between explora-
tion (gather new knowledge) versus exploitation (optimize decisions 
on the basis of current knowledge)46; it remains unclear how this 
is achieved precisely in biological systems. Our data suggests that 
sleep-dependent processing can allow for more targeted exploration 
on the basis of knowledge accumulated regarding reward-related 
neural firing during awake behaviors. Sleep may therefore allow 
further exploration of the statistics of the causal relation of neural  
activity to successful outcomes. The net result is the establishment 
of neural activity patterns that appear to reflect the causal neuron-
behavior relationship.
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Methods
Methods, including statements of data availability and any associated 
accession codes and references, are available in the online version of 
the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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ONLINE METHODS
Animals/surgery. Experiments were approved by the Institutional Animal Care 
and Use Committee at the San Francisco VA Medical Center. We used a total of 
ten adult Long-Evans male rats (n = 5 were used for optogenetic experiments). 
No statistical methods were used to pre-determine sample sizes, but our sample 
sizes are similar to those reported in previous publications23,31. Animals were 
kept under controlled temperature and a 12-h light: 12-h dark cycle with lights 
on at 06:00 a.m. Probes were implanted during a recovery surgery performed 
under isofluorane (1–3%) anesthesia. Atropine sulfate was also administered 
before anesthesia (0.02 mg/kg of body weight) The post-operative recovery regi-
men included administration of buprenorphine at 0.02 mg/kg and meloxicam at  
0.2 mg/kg . Dexamethasone at 0.5 mg/kg and Trimethoprim sulfadiazine at  
15 mg/kg were also administered post-operatively for 5 d. We used 32-channel 
microwire arrays; arrays were lowered down to 1,400–1,800 µm in the primary 
motor cortex (M1) in the upper limb area (1–3 mm anterior to bregma and 
2–4 mm lateral from midline). The reference wire was wrapped around a screw 
inserted in the midline over the cerebellum. Final localization of depth was based 
on quality of recordings across the array at the time of implantation. All animals 
were allowed to recover for 1-week before start of experiments. Data collection 
and analysis were not performed blind to the conditions of the experiments.

Viral injections. We used a red-shifted halorhodopsin, Jaws (AAV8-hSyn-Jaws-
KGC-GFP-ER2, UNC Viral Core) for neural silencing in 5 rats for optogenetic 
experiments38. Viral injections were done at least 2.5 weeks before chronic 
microelectrode array implant surgeries. Rats were anesthetized, as stated before 
and body temperature was maintained at 37 °C with a heating pad. Burr hole 
craniotomies were performed over injection sites, and the virus was injected 
using a Hamilton Syringe with 34G needle. 500-nl injections (100 nl per min) 
were made into deep cortical layers (1.4 mm from surface of brain) at two sites 
in M1 (coordinates relative to bregma: posterior, 0.5 mm and lateral, 3.5 mm; 
and anterior, 1.5 mm and lateral, 3.5 mm). After the injections, the skin was 
sutured and the animals were allowed to recover with same regimen as stated 
above. Viral expression was confirmed with fluorescence imaging. Optogenetic 
inhibition significantly reduced firing in M1 neurons, with a reduction in 50–70% 
of recorded cells.

Electrophysiology. We recorded extracellular neural activity using tungsten 
microwire electrode arrays (MEAs, Tucker-Davis Technologies (TDT)). We 
recorded spike and LFP activity using a 128-channel TDT-RZ2 system (TDT). 
Spike data was sampled at 24,414 Hz and LFP data at 1,018 Hz. ZIF-clip-based 
analog headstages with a unity gain and high impedance (~1 G) was used. 
Optogenetic experiments, including controls, were done with digital headstages 
primarily because of the ability to pass the optical fiber through the commutator. 
Only clearly identifiable units with good waveforms and high signal-to-noise ratio 
were used. The remaining neural data was recorded for offline analysis. Behavior 
related timestamps (that is, trial onset, trial completion) were sent to the RZ2 
analog input channel using a digital board and synchronized to neural data. We 
initially used an online sorting program (SpikePac, TDT) for neuroprosthetic 
control. We then conducted offline sorting23.

Behavior. After recovery, animals were typically handled for several days before 
the start of experimental sessions. Animals acclimated to a custom plexiglass 
behavioral box (Fig. 1a) during this period. The box was equipped with a door at 
one end. Initially, water delivery from the actuator was not introduced and they 
were just acclimatized to the box. Toward the end of the acclimation period, the 
rats typically fell asleep while in the box. Animals were then water scheduled 
such that water (from the feeding tube illustrated in Fig. 1a) was available in a 
randomized fashion while in the behavioral box. We monitored body weights 
on a daily basis to ensure that the weight did not drop below 95% of the initial 
weight. Behavioral sessions were conducted in the morning, with second sessions 
conducted in the afternoon. We recorded neural data from the rats for 2 h before 
start of BMI training (that comprised Sleeppre). The rats were then allowed to 
perform the task over a ~2-h session (BMI1). Recorded neural data was entered 
in real-time from the TDT workstation to custom routines in Matlab. These then 
served as control signals for the angular velocity of the feeding tube. The rats typi-
cally performed ~180–200 trials per session. These sessions typically lasted from 
90–120 min based on the rate of trial completion. Following this, we recorded 

neural data from animals for a 2-h period (including Sleeppost). The animals 
then continued with another 90–120-min training session (BMI2). Sorted units 
at the beginning of the recording were checked for maintenance throughout the 
second training session.

Neural control of the feeding tube. During the BMI training sessions, we typi-
cally randomly selected two well–isolated units as ‘direct’ and allowed their neural 
activity to control the angular velocity of the feeding tube. In two of the ten 
sessions (that is, from the 5 non-viral injected rats), there was only one neu-
ron selected as the direct unit. The remaining neurons in all the experiments 
(that is, indirect) were recorded but not causally linked to actuator movements.  
We did not find any systematic differences in waveform shape (that is, narrow 
versus broad) or baseline firing rate for these two populations. These units main-
tained their stability throughout the recording as evidenced by stability of wave-
form shape and interspike–interval histograms. We binned the spiking activity 
into 100-ms bins. We then established a mean firing rate for each neuron over a 
3–5-min baseline period. During this period the animals were typically transi-
tioning between walking, exploring and periods of rest.

The mean firing rate was then subtracted from its current firing rate at all 
times. The specific transform that we used was 

qv C G r i G r i= ∗ ∗ + ∗( ( ) ( ))1 1 2 2

where θv was the angular velocity of the feeding tube, r1(i) and r2(i) were firing 
rates of the direct units. G1 and G2 were randomized coefficients that ranged from 
+1 to −1 and were held constant after initialization. C was a fixed constant that 
scaled the firing rates to arrive at a value for angular velocity. The animals were 
then allowed to control the feeding tube via modulation of neural activity. The 
tube started at the same position at the start of each trial (P1 in Fig. 1a,b). The 
calculated angular velocity was added to the previous angular position at each 
time step (100 ms). During each trial, the angular position could range from −45 
to +180 degrees. If the tube stayed in the ‘target zone’ (P2 in Fig. 1a; spanned 10° 
area) for a period of 300 ms, a water reward was delivered. In the BMIvariable-reward 
experiments (n = 4 sessions in two rats), the rats correctly positioned the tube, 
but reward delivery (that is, the water from the tube) was randomly delayed by 
a period ranging from 1–3 s. In contrast, the BMIfixed-reward (that is, typical BMI 
session), the reward was delivered with a fixed delay of ~200 ms relative to task 
completion. In the beginning of a session, most rats were unsuccessful at bringing 
the feeding tube to position P2. Most rats steadily improved control and reduced 
the time to completion of the task during the first session. We obtained multiple 
learning sessions from each animal. These sessions were typically several days 
to 1 week apart to ensure that new units were recorded. Consistent with past 
studies, we also found that incorporation of new units into the control scheme 
required new learning8,23.

Closed-loop sleep experiments using optogenetics. Three types of experi-
ments were conducted using the five Jaws-injected animals, namely OPTOUP  
(n = 11), OPTODOWN (n = 8) and OPTOOFF (n = 8). These experiments 
were largely randomly interspersed among the animals. However, while the 
OPTODOWN were only conducted in three animals, these animals also contrib-
uted to the OPTOUP and OPTOOFF experiments. In general, we identified the 
phases of the LFP associated with ‘UP’ and ‘DOWN’ states based on the rela-
tionship of the neural spiking to the LFP. For example, as shown in Figure 5, 
the negativity in our LFP signals was associated with neural spiking and thus 
consistent with an UP state, which are natural states of increased activity during 
slow oscillations.

The closed-loop interventions were conducted by triggering the LED light 
based on real-time detection of cortical states. We used a custom script in the 
RPvdsEx Prgram (TDT) to identify slow oscillations in real-time during sleep 
blocks. In the OPTOUP experiments, we conducted two types of triggering  
(n = 3 power based; n = 8 filtering based). In both cases, the LED light was deliv-
ered during cortical ‘UP’ states by placing a manual threshold on filtered LFP 
trace; the manual threshold was selected visually to coincide with the respective 
phase on the slow oscillations as noted below. For the ‘power-based’ triggering, 
we used the following approach. The algorithm/workstation calculated the LFP 
power in the 0.1–4-Hz range and compared it to the threshold. Once the thresh-
old was exceeded for >100 ms, LED illumination (625-nm fiber-coupled LED 
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(ThorLabs)), with 200/400-µm diameter optic fibers (Doric Lenses) was triggered 
for 100 ms. For the ‘filtering based’ approach, we used a real-time implementa-
tion of a Butterworth filter to filter the raw LFP in a 0.1–4-Hz band (Fig. 5d). 
The UP state was determined by setting a ‘negative’ threshold on the LFP (that 
is, as displayed in the convention in Fig. 5d). The LED was again triggered when 
it was respectively above/below this threshold. Notably, this type of stimulation 
was exclusive to the UP state. Because we did not observe any differences we 
combined both sets as the OPTOUP condition.

During OPTODOWN sessions, we directly placed a ‘positive’ threshold on the 
filtered LFP; thus the stimulation was triggered during threshold crossings of 
‘DOWN’ (that is, DOWN states with natural periods of quiescence during slow 
oscillations). These stimulations were also typically brief (that is, 100 ms). A 
typical example is shown in Figure 5. Supplementary Figure 3 shows that total 
incidents of 100-ms stimulations were similar in both OPTOUP and OPTODOWN 
experiments, and the light was on for a similar proportion of time. Finally, a group 
of control experiments called OPTOOFF (that is, where no stimulation was trig-
gered) was also conducted in the Jaws-injected rats. Durations of total pre and post 
sleep were similar in all 3 session types (Supplementary Fig. 4). We also calcu-
lated LFP power and SFC changes for individual neurons in all three groups.

Sessions and changes in performance. Analysis was performed in Matlab 
(Mathworks) with custom-written routines. A total of ten BMIfixed-reward train-
ing sessions recorded from five rats were used for our initial analysis. All of these 
sessions demonstrated ‘robust learning’ (that is, >3 s.d. drop in time to comple-
tion in the last 1/3 of trials or ‘late’ trials in comparison to the first 1/3 of trials or 
‘early’ trials). These sessions were followed by a second training session (that is, 
BMI2). In Figure 1c, we compared changes in task performance across sessions. 
Specifically, we compared the performance change between BMI1Late, BMI2Early 
and BMI2Late by calculating the mean and standard error of the time to comple-
tion during the last third trials in BMI1 and the first and last third trials BMI2 
(Fig. 1c). We used a paired t test to assess statistical significance.

Task-related activity. The distinction between TRD and TRI neurons was based 
on whether units were used for the direct neural control of the feeding tube. 
The change in modulation depth (MD∆) was calculated by comparing the peak 
activity around the task (in the 5-s window after the task start/ 4 s before task-
end/reward) over baseline firing activity (averaged activity of 4 s before task start) 
on the peri-event time histograms (PETH, bin length 50 ms). In other words, the 
MD∆ is a measure of the modulation of firing rate relative to the pre-task start 
baseline rate. Modulation of baseline firing activity after the ‘Go cue’ (task start) 
or before receipt of ‘reward’ (task end) was calculated and this was compared for 
TRD and TRI neurons from BMI1 to BMI2 (MD∆ change from BMI1 to BMI2). 
This was calculated across the last third of trials from BMI1 and first and last third 
of trials from BMI2 (BMI2Early and BMI2Late respectively). In a BMI session with 
approximately 200 trials, these values were averaged across ~65 trials. To ensure 
that any online training effects were not contributing to the observed reduction 
in MD∆ of TRI units, in a subset of these sessions we also averaged MD∆ for just 
30 trials before and after; no significant differences were evident.

For Figures 1 and 3, PETH were smoothed using a Bayesian adaptive-regres-
sion spline algorithm, implemented within MATLAB using toolboxes down-
loaded at (http://www.cnbc.cmu.edu/~rkelly/code.html)31,47. The algorithm 
automatically optimized for the number and location of ‘knots’ (that is, regions 
in which a new local regression model improves the overall fit of the curve) was 
determined automatically using a Markov chain Monte Carlo implemented to 
optimize the Bayes Information Criteria and thereby, offered a better visualization 
of dynamic changes in the rate of change of spike trains. These curves were not 
used for other sets of analysis.

Identification of NREM oscillations. Identification of pre- and post-NREM 
epochs was performed by combined visual assessment of presence of low-fre-
quency, high-amplitude slow-wave oscillations as well as a 3 s.d. threshold of the 
filtered data (0.3–4 Hz). If there was a sustained reduction >1.5 s in the amplitude 
of the slow-wave activity below threshold during a continuous epoch we excluded 
these segments23,31.

Coherency measure. We used the Chronux toolbox to calculate the SSC (http://
chronux.org/)48. Its magnitude is a function of frequency and takes values 

between 0 and 1. For its calculation, the pre- and post-sleep were segmented into 
20-s segments and then the coherency measured was averaged across segments. 
For the multitaper analysis, we used a time-bandwidth (TW) product of 10 with 
19 tapers. To compare coherences across groups, a z score was calculated using 
the programs available in the Chronux Toolkit. Coherence between activity in 
two regions, Cxy was calculated and defined as 

C
R

R Rxy
xy

xx yy
=

| |

where Rxx and Ryy are the power spectra and Rxy is the cross-spectrum. More 
specifically, it is a pairwise measure of synchronized co-firing of neurons in a 
frequency dependent manner. For example, during NREM sleep, it can quan-
tify synchronous co-firing relative to low-frequency oscillations in the 0.3–4-Hz 
range. Our previous work has also shown that SSC values are related to the spike 
cross-correlogram measured during UP states23.

Spectral analysis were calculated in segmented NREM epochs and averaged 
across these epochs across animals. Mean coherence was calculated between 
0.3–4 Hz. Significance testing on coherence estimates was performed on mean 
estimates between TRD – TRD and TRD – TRI pairs using unpaired t tests. The 
task-related direct unit with the greatest depth modulation was used to calcu-
late SSC for every other unit. Similarly, for SFC analysis in optogenetic experi-
ments, mean power changes in the 0.3–4-Hz band were compared for OPTOUP; 
OPTODOWN and OPTOOFF experiments. We also equaled the number of spikes 
in pre- and post-sleep23,28 to account for the changes in firing rates; this was 
especially pertinent for the optogenetic intervention studies.

Ensemble activation analyses. To characterize ensemble reactivations follow-
ing sleep, we performed an analysis that compared neural activity patterns dur-
ing Sleep1 and Sleep2 with a template that was created during task execution 
in BMI1

23,30,31. We first computed a pairwise unit activity correlation matrix 
during BMI1 by concatenating binned spike trains (tbin = 50 ms) for each neu-
ron across trials (0.5 s before the onset of trial up to 5s after the onset of BMI 
task for each trial). This concatenated spike train was z-transformed, and then 
organized into a 2-D matrix organized by neurons (x) and time (B for number 
of time bins). From this spike count matrix, we calculated the correlation matrix 
(Ctask), and then calculated the eigenvector for the largest eigenvalue from this 
correlation matrix to study. This eigenvector was used as the ensemble template 
of activity, which was then projected back on to the neural activity trains from 
the same population of neurons during Sleep1 and Sleep2. This projection was a 
linear combination of Z-scored binned neural activity from the two blocks above, 
weighted by the PC ensemble (that is, the eigenvector) calculated from the BMI1 
matrix. This linear combination has been described as the “activation strength” 
of that particular ensemble. In this analysis we focused on the first eigenvector, 
as the first PC explained most task-related variance (see Supplementary Fig. 5 
for two examples).

Reactivation triggered peri-event time histogram (microstructure of reactiva-
tion). We also constructed time histograms of single unit activity around reac-
tivation events. We binned spike counts from 250 ms before and after ensemble 
reactivation events using a 5-ms bin size and calculated the mean/standard error 
of the binned neural firing. The reactivation events that were chosen for PETHs 
were those with a reactivation strength that was significantly greater than for the 
pre- sleep block. Usually top 10–20 percentile reactivation strengths from the 
post-sleep fulfilled this criterion. Once the PETHs were constructed, the modula-
tion depth around reactivations (MDreactivation) was calculated by comparing the 
peak of firing during reactivation to the mean baseline firing (that is, at the tails). 
t test was performed to compare MDreactivation between TRD and TRI units, and 
also their levels in pre-sleep. We also checked for MDreactivation of TRD and TRI 
units at random low-percentile reactivation events and their MDreactivation was 
indistinguishable (Supplementary Fig. 1).

Analyses of neural firing variability and neuronal pair correlations. The 
modulation characteristics of each neuron in the BMI task in the two frames of 
reference (namely, ‘task-start’ and ‘task-end’) were examined using the following: 
Fano factor, which is a statistical measure of the dynamics of the firing rate of 

http://www.cnbc.cmu.edu/~rkelly/code.html
http://chronux.org/
http://chronux.org/
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a cell35,36; and cross-correlation calculated between the rates of cell pairs. Fano 
factor, F is defined as 

F = s
m

2

where σ2 is the variance and µ is the mean of a spike count process (here  
in a 50-ms time window). µ was the average firing rate and was calculated  
as follows: 

m =
=
∑1

1B
C n

n B
( )

:

where C(n) is the spike counts in 50-ms time window and B is the total window 
sample number. Since, fano factor can be influenced by firing rate, we also com-
pared fano factor in task start and task end frames of reference where the firing 
rates were similar and we still found similar trends. Cross-correlation, on the 
other hand, measured the similarity of two firing rate series (50-ms bins) as a 
function of the displacement of one relative to the other. This pairwise correlation 
of the neural activity was calculated for TRD – TRD and TRD – TRI neuronal pairs 
using Matlab’s xcorr function (Fig. 4). Time series of concatenated binned spike 
counts were created either around task start (first 1 s) or around task end (from 
trial end to 1 s prior). Statistical comparisons were performed using a repeated-
measures ANOVA, followed by post hoc t tests to identify specific time points 
that were significantly different.

Statistics. There were a total of 10 robust BMI learning sessions that we used 
(BMIfixed-reward) for analyzing the trends from BMI1 to BMI2. There were a total 
of 18 TRD and 105 TRI units in these experiments. There were also 4 BMIvariable-

reward sessions where we had 6 TRD and 41 TRI neurons. Optogenetics experi-
ments (in Jaws-injected rats) had 11 sessions with OPTOUP stimulation (with 17 
TRD and 95 TRI units), 8 sessions with OPTODOWN stimulation (with 14 TRD 

and 94 TRI units), and 8 sessions with OPTOOFF stimulation (with 13 TRD and 
62 TRI units). We also recorded sleep before (Sleeppre) and after (Sleeppost) after 
BMI1. In all these experiments, we performed paired t-test to compare perform-
ance changes from BMI1 to BMI2 ; MD∆ change for TRD or TRI units from BMI1 
to BMI2; MDreactivation change and firing rate changes for TRD and TRI units from 
Sleeppre to Sleeppost ; SSCmag changes for TRD – TRD and TRD – TRI neuronal 
pairs from Sleeppre to Sleeppost (Figs. 1c and 6b). Data distribution was tested for 
normality and non-parametric test was substituted if needed (Wilcoxon signed 
rank test). Unpaired t tests were also used for comparisons such as MDreactivation 
in TRD versus TRI units pools; MD∆ change for TRD versus TRI units from BMI1 
and BMI2; and features of stimulation in OPTOUP and OPTODOWN experiments 
(Figs. 1e and 7a; Supplementary Figs. 1 and 3). We also performed one-way 
ANOVA with multiple comparisons (test of homogeneity of variances was done) 
wherever significance assessment was required (Figs. 2e, 3c, 4a, 5c,f and 7c, and 
Supplementary Fig. 4). We also used linear regression or correlation to evaluate 
trends between MDreactivation versus MD∆ change from BMI1 and BMI2, or corre-
lated firing around task start or task end; pairwise firing correlation of TRD – TRD 
and TRD – TRI neuronal pairs versus MDreactivation; between time spent in NREM 
sleep and MD∆ change from BMI1 and BMI2 for different units; and SSCmag 
changes for TRD – TRD and TRD – TRI neuronal pairs versus MD∆ change for 
TRD or TRI units from BMI1 to BMI2; and SFC changes in optogenetics experi-
ments, versus MD∆ change (Figs. 2b, 4b,c and 7d, and Supplementary Fig. 2).

A Supplementary Methods Checklist is available.

Data availability statement. The data that support the findings from this study 
are available from the corresponding author upon request.

47.	Wallstrom, G., Liebner, J. & Kass, R.E. An implementation of Bayesian adaptive 
regression splines (BARS) in C with S and R Wrappers. J. Stat. Softw. 26, 1–21 
(2008).

48.	Mitra, P. & Bokil, H. Observed Brain Dynamics (Oxford University Press, 2008).
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Para2

+
- 1e upaired t-

test
Results
, Para2

TRd=18, 
TRi=105

Modulation depth 
change from BMI1 
to all BMI2 trials

Results, 
Para2

box plot with 
mean +/- SEM

Fig 1 
legend 1.8915e-10 Fig 1 

legend t(121)=6.9596 Results, 
Para2

+
- NA unpaired t-

test
Results
, Para3

TRd-
TRd=8, 

TRd-
TRi=105

SSC change for 
TRd-TRd and TRd-

TRi pairs

Results, 
Para3

box plot with 
mean +/- SEM

Result
s, 

Para3
1.4856e-08 Results, 

Para3 t(121)=6.074 Results, 
Para3

+
- 2b pearson 

correlation
Results
, Para3 228

SSC vs modulation 
depth changes for 
TRd and TRiunits 

from BMI1 to BMI2 

Results, 
Para3 correlation Fig 2, 

legend P<0.05 Fig 2 
legend r(123)=0.51 Results, 

Para3

+
- 2e one-way 

ANOVA
Results
, Para6

TRd=18
+18, 

TRi=105
+105 

(Pre and 
post 

sleep)

Modulation during 
reactivation for 

TRd and TRi from 
pre sleep to post 

sleep

Results, 
Para6

box plot with 
mean +/- SEM

Fig 2 
legend 1.6837e-18 Fig 2 

legend F(3,242)=34.28 Results, 
Para6

+
-

Supp 
Fig 1

unpaired t-
test

Results
, Para6

TRd=18, 
TRi=105

Modulation during 
reactivation vs 

downscaling from 
BMI1 to BMI2 

Results, 
Para6

box plot with 
mean +/- SEM

Supp 
Fig1 0.4926 Supp 

Fig1 t(121)=-0.6883 Supp Fig1

+
-

Supp 
Fig 2 Regression Results

, Para6
TRd=18, 
TRi=105

MD reactivation of 
TRd and TRi cells 
versus their task 

modulation change 
from BMI1 to BMI2

Results, 
Para6 scatter plot Supp 

Fig2 10e-5 Supp 
Fig2 R^2= 0.17 Supp Fig2

+
- 3c one-way 

ANOVA
Results
, Para8

TRd=18, 
TRi=105 

 in 3 
condition

s

Fano factor of TRd 
and TRi cells 

around task start 
and task end for 
successful and 

unsuccessful trials 
(in BMI fixed 

reward)

Results, 
Para8

box plot with 
mean +/- SEM

Fig 3c 
legend 2.6661e-33 Fig 3c 

legend F(5,350)=41.2044 Fig 3c 
legend

+
- 3c one-way 

ANOVA

Results
, 

Para10

TRd=18, 
TRi=105 
in fixed 
reward 

and 
TRd=6, 

TRi=41 in 
variable 
reward's 
task end

Fano factor of TRd 
and TRi cells 

around task end  
BMI fixed reward 
and BMI variable 

reward 
experiments

Results, 
Para10

box plot with 
mean +/- SEM

Fig 3c 
legend 4.4874e-33 Fig 3c 

legend F(3,166)=83.8646 Fig 3c 
legend
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+
- 4a one-way 

ANOVA

Results
, 

Para10

TRd-TRd 
pairs= 8; 
TRd-TRi 
pairs=10 
in BMI 
fixed 

reward; 
TRd-TRd 
pairs= 2; 
TRd-TRi 
pairs=41 
in BMI 
fixed 

reward;

Correlated firing 
around task start 
and end for TRd-
TRd and TRd-TRi 
neurons in BMI 

fixed reward and 
BMI variable 

reward 
experiments (in 

task start and task 
end frames of 

reference)

Results, 
Para10

box plot with 
mean +/- SEM

Fig 4a 
legend 2.4089e-09 Fig 4a 

legend F(7,304)=8.3592 Fig 4a 
legend

+
- 4b Regression

Results
, 

Para11

TRd-TRd 
pairs= 8; 
TRd-TRi 
pairs=10

5 with 
their 

respectiv
e MD 

reactivati
ons in 
sleep

Correlated firing 
during reward (for 
BMI fixed reward 
experiments) vs 

MD reactivation in 
Sleep

Results, 
Para11 r squared Fig 4b P < 10e–21 Fig 4b R^2= 0.54 Fig 4b

+
- 4c Regression

Results
, 

Para11

TRd-TRd 
pairs= 2; 
TRd-TRi 
pairs=41 

with 
their 

respectiv
e MD 

reactivati
ons in 
sleep

Correlated firing 
during reward (for 

BMI variable 
reward 

experiments) vs 
MD reactivation in 

Sleep

Results, 
Para 11 r squared Fig 4c P>0.05 Fig 4c R^2= 0.07 Fig 4c

+
- 5c one-way 

ANOVA

Results
, 

Para12

OPTO_U
P TRd= 

17, 
OPTO_D

OWN 
TRd= 14  
OPTO_O
FF TRd= 

13

Modulation depth 
of TRd cells in 

OPTO_UP, 
OPTO_DOWN and 

OPTO_OFF 
experiments from 
pre sleep to post 

sleep

Fig 5c 
legend

box plot with 
mean +/- SEM

Fig 5c 
legend 3.755e-28 Fig 5c 

legend F(2,41)=425.745 Fig 5c 
legend

+
- 5f one-way 

ANOVA

Results
, 

Para12

OPTO_U
P=11 

sessions;  
OPTO_D
OWN=8 
sessions; 
OPTO_O

FF= 8 
sessions

PSD changes in 
OPTO_UP, 

OPTO_DOWN and 
OPTO_OFF 

experiments from 
pre sleep to post 

sleep

Fig 5f 
legend

box plot with 
mean +/- SEM

Fig 5c 
legend 0.8749 Fig 5c 

legend F(2,27)=0.1344 Fig 5c 
legend

+
- NA Spearman 

Correlation
Results
, Para2 10 pairs

Time spent in sleep 
vs extent of TRi 

rescaling

Results, 
Para2 correlation

Result
s, 

Para2
0.0101 Results, 

Para2 r=0.7148 Results, 
Para2

+
- NA

Wilcoxon 
signed rank 

test

Results
, Para2 18 pairs TRd modulation in 

BMI1 vs BMI2
Results, 
Para2 mean +/- SEM

Result
s, 

Para2
0.0352 Results, 

Para2 Z=-1.8092 Results, 
Para2

+
- NA paired t-test Results

, Para2 105 pairs TRi modulation in 
BMI1 vs BMI2

Results, 
Para2 mean +/- SEM

Result
s, 

Para2
3.43e-27 Results, 

Para2 t(104)=14.5805 Results, 
Para2

+
- NA paired t-test Results

, Para2 10 pairs Pre and Post Sleep 
durations 

Results, 
Para2

mean +/- SEM (for 
Sleep post)

Result
s, 

Para2
0.9560 Results, 

Para2 t(9)=0.0567 Results, 
Para2

+
- NA paired t-test Results

, Para3 18 pairs
Sleep epochs firing 

rates (Watson 
style), TRd

Results, 
Para3 mean +/- SEM

Result
s, 

Para3
0.1184 Results, 

Para3 t(17)=-1.6446 Results, 
Para3
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+
- NA paired t-test Results

, Para3 105 pairs
Sleep epochs firing 

rates (Watson 
style), TRi

Results, 
Para3 mean +/- SEM

Result
s, 

Para3
0.9605 Results, 

Para3 t(104)=-0.0497 Results, 
Para3

+
- NA

one-way 
ANOVA 

Results
, Para8

TRd=18, 
TRi=105 

 in 2 
condition

s

Fano factor of TRd 
and TRi cells 

around task start 
and task end in 

BMI fixed reward 
at equal firing rate 

activity

Results, 
Para8 mean +/- SEM

Result
s, 

Para8
1.9794e-10 Results, 

Para8 F(3,242)=17.7181 Results, 
Para8

+
- NA paired t-test Results

, Para9

4 BMI 
variable 
reward 
sessions

BMI variable 
reward task 

performance 
change from 
BMI1Early to 

BMI1Late

Results, 
Para9

mean +/- SEM (for 
change)

Result
s, 

Para9
0.0105 Results, 

Para9 t(3)=4.464 Results, 
Para9

+
- NA paired t-test Results

, Para9

TRd=6, 
in BMI 

variable 
reward 

experime
nts

BMI variable 
reward neurons 
MD change from 

BMI1 to BMI2

Results, 
Para9

mean +/- SEM (for 
change)

Result
s, 

Para9
0.1086 Results, 

Para9 t(5)=-1.9508 Results, 
Para9

+
- NA paired t-test Results

, Para9

 
TRi=41 in 

BMI 
variable 
reward 

experime
nts

BMI variable 
reward neurons 
MD change from 

BMI1 to BMI2

Results, 
Para9

mean +/- SEM (for 
change)

Result
s, 

Para9
0.1503 Results, 

Para9 t(40)=-1.4666 Results, 
Para9

+
- NA Spearman 

correlation

Results
, 

Para11

TRd-TRd 
pairs= 8; 
TRd-TRi 
pairs=10

5 with 
their 

respectiv
e MD 

reactivati
ons in 
sleep

Correlated firing 
during task start 

(for BMI fixed 
reward 

experiments) vs 
MD reactivation in 

Sleep

Results, 
Para11 correlation value

Result
s, 

Para1
1

P = 0.19 Results, 
Para11 r = 0.12 Results, 

Para11

+
-

Supp 
Fig 
3a

unpaired t-
test

Results
, 

Para12

OPTO_U
P=11 

sessions;  
OPTO_D
OWN=8 
sessions

100 ms stimulation 
pulse incidence 

during OPTO_UP 
and OPTO_DOWN 

experiments 

Results, 
Para12

box plot with 
mean +/- SEM

Supp 
Fig 3a 0.3338 Supp Fig 

3a t(17)=0.9947 Supp Fig 
3a

+
-

Supp 
Fig 
3a

unpaired t-
test

Results
, 

Para12

OPTO_U
P=11 

sessions;  
OPTO_D
OWN=8 
sessions

100 ms stimulation 
duration 

proportion to total 
NREM sleep  

during OPTO_UP 
and OPTO_DOWN 

experiments 

Results, 
Para12

box plot with 
mean +/- SEM

Supp 
Fig 3b 0.0538 Supp Fig 

3b t(17)=2.0721 Supp Fig 
3b

+
-

Supp 
Fig 4

one-way 
ANOVA

Results
, 

Para12

OPTO_U
P=11 

sessions;  
OPTO_D
OWN=8 
sessions; 
OPTO_O

FF= 8 
sessions

Pre sleep and post 
sleep  durations in 

OPTO_UP, 
OPTO_DOWN, and 

OPTO_OFF 
experiments 

Results, 
Para12

box plot with 
mean +/- SEM

Supp 
Fig 4 0.4740 Supp Fig 

4 F(5,48)=0.9235 Supp Fig 
4

+
- 6b paired t-test

Results
, 

Para13

OPTO_U
P=11 

sessions

Performance 
changes in 
OPTO_UP 

experiments from 
BMI1 late to BMI2 

early (both tail)

Fig 6b 
legend

All individual 
session changes 

are shown

Fig 6b 
legend 3.8955e-04 Fig 6b 

legend t(10)= -5.22 Fig 6b 
legend
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+
- 6b paired t-test

Results
, 

Para13

OPTO_D
OWN=8 
sessions

Performance 
changes in 

OPTO_DOWN 
experiments from 
BMI1 late to BMI2 

early

Fig 6b 
legend

All individual 
session changes 

are shown

Fig 6b 
legend  6.822e-04 Fig 6b 

legend t(7)=5.122 Fig 6b 
legend

+
- 6b paired t-test

Results
, 

Para13

OPTO_O
FF=8 

sessions

Performance 
changes in 
OPTO_OFF 

experiments from 
BMI1 late to BMI2 

early

Fig 6b 
legend

All individual 
session changes 

are shown

Fig 6b 
legend

5.640e-05 Fig 6b 
legend t(7)=7.73 Fig 6b 

legend

+
- NA one-way 

ANOVA

Results
, 

Para13

TRd=17, 
TRi=95 

 in 2 
frames

Fano factor of TRd 
and TRi neurons in 

OPTO_UP 
experiments in 

BMI2 in task start 
and task-end 

frames of 
references

Results, 
Para13 mean +/- SEM 

Result
s, 

Para1
3

0.7229 Results, 
Para13 F(3,220)=0.4423 Results, 

Para13

+
- 7a unpaired t-

test

Results
, 

Para14

TRd=17, 
TRi=95 

MD change of TRd 
and  

TRi neurons in 
OPTO_UP 

experiments from 
BMI1 to BMI2

Fig 7a 
legend

box plot with 
mean +/- SEM

Fig 7a 
legend 0.64059 Fig 7a 

legend t(110)= -0.46816 Fig 7a 
legend

+
- 7a unpaired t-

test

Results
, 

Para14

TRd=14, 
TRi=94

MD change of TRd 
and  

TRi neurons in 
OPTO_DOWN 

experiments from 
BMI1 to BMI2

Fig 7a 
legend

box plot with 
mean +/- SEM

Fig 7a 
legend  3.883e-04 Fig 7a 

legend t(106)= 3.6649 Fig 7a 
legend

+
- 7a unpaired t-

test

Results
, 

Para14

TRd=13, 
TRi=62

MD change of TRd 
and  

TRi neurons in 
OPTO_OFF 

experiments from 
BMI1 to BMI2

Fig 7a 
legend

box plot with 
mean +/- SEM

Fig 7a 
legend 5.0074e-07 Fig 7a 

legend t(73)= 5.5155 Fig 7a 
legend

+
- NA paired t-test

Discuss
ion, 

Para 5
TRd=17

MD change of TRd 
neurons from 

BMI1 to BMI2 in 
OPTO_UP 

experiments

Discussio
n, Para 5 mean +/- SEM

Discus
sion, 

Para 5
0.02024 Discussio

n, Para 5 t(16)= -2.229 Discussio
n, Para 5

+
- NA paired t-test

Discuss
ion, 

Para 5

 
TRi=95

MD change of TRd 
neurons from 

BMI1 to BMI2 in 
OPTO_UP 

experiments

Discussio
n, Para 5 mean +/- SEM

Discus
sion, 

Para 5
6.691e-10 Discussio

n, Para 5 t(94)= -6.727 Discussio
n, Para 5

+
- 7c one-way 

ANOVA

Results
, 

Para14

OPTO_U
P=17 

neurons;  
OPTO_D
OWN=15 
neurons; 
OPTO_O
FF= 13 

neurons

SFC change of TRd 
neurons from pre 

sleep and post 
sleep in OPTO_UP, 
OPTO_DOWN, and 

OPTO_OFF 
experiments 

Results, 
Para14

box plot with 
mean +/- SEM

Fig 7c 
legend 4.79701e-11 Fig 7c 

legend F(2,41)=44.831 Fig 7c 
legend

+
- 7d regression

Results
, 

Para14

OPTO_U
P=11 

sessions;  
OPTO_D
OWN=8 
sessions; 
OPTO_O

FF= 8 
sessions

Averaged TRd SFC 
change from Sleep 
pre to Sleep post 
versus averaged 

TRi rescaling from 
BMI1 to BMI2 in 

OPTO_UP, 
OPTO_DOWN, and 

OPTO_OFF 
experiments 

Results, 
Para14 r-squared Fig 7d 

legend 10e-6 Fig 7d 
legend R^2=0.66 Fig 7d 

legend

+
- NA paired t-test

Results
,  

Para 7
18 pairs

TRd modulation 
around task start 

vs task end

Results, 
Para 7 mean +/- SEM

Result
s, Para 

7
3.0599e-06 Results, 

Para 7 t(17)= -6.8061 Results, 
Para 7
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+
- NA paired t-test

Results
,  

Para 7
105 pairs

TRd modulation 
around task start 

vs task end

Results,  
Para 7 mean +/- SEM

Result
s,  

Para 7
0.0531 Results,  

Para 7 t(104)= 1.9565 Results,  
Para 7

 Representative figures

1.    Are any representative images shown (including Western blots and 
immunohistochemistry/staining) in the paper?  

If so, what figure(s)?

Yes, following figures show representative performance 
improvements after sleep, Modulation depth changes after sleep 
(for direct, TR_d and indirect, TR_i neurons), spike spike coherence 
changes in sleep sessions before and after BMI training, modulation 
around reactivation in pre and post sleep,  modulation around task 
start and task end, fano factor in same frames for BMI fixed and 
variable reward  optogenetic inhibition around slow-wave activity in 
UP, DOWN and OFF experiments, and behavioral learning curves in 
them, SFC changes in them, 100 ms stimulation pulses incidence 
and proportion in them, durations of sleep in different kinds of 
experiments: Fig. 1c,e;  Fig 2a,c-e; Fig. 3a,c; Fig. 4a; Fig 5c,f; Fig 6b; 
Fig 7a,d; Supp Fig 1, Supp Fig 3a,b; Supp Fig 4.

2.    For each representative image, is there a clear statement of               
how many times this experiment was successfully repeated and a 
discussion of any limitations in repeatability?  

If so, where is this reported (section, paragraph #)?

Yes: 
Fig. 1: Results para 1 and 2 ; and methods para 1,3,4 8 
Fig. 2: Results para 3 and 6 ; and methods para 1,3,4 8 
Fig. 3: Results para 8 and 10 ; and methods para 1,3,4 8 
Fig. 4: Results para 10 and 11 ; and methods para 1,3,4 8 
Fig. 5: Results para 12 ; and methods para 1,7 
Fig. 6: Results para 13 ; and methods para 1,7 
Fig. 7: Results para 14 ; and methods para 1,7 
 
Supp Fig 1: Results para 6; and methods para 1,3,4 8 
Supp Fig 3: Results para 12 ; and methods para 1,7 
Supp Fig 4: Results para 12 ; and methods para 1,7 

 Statistics and general methods

1.    Is there a justification of the sample size? 

If so, how was it justified?  

Where (section, paragraph #)?  

       Even if no sample size calculation was performed, authors should 
report why the sample size is adequate to measure their effect size. 

Our sample size is similar to what is usually used to establish task- 
related consolidation during sleep, or task-related neural 
modulation in other studies (for example, n ranging from 5 to 12 in 
in our references). This is stated in online methods, paragraph 1. 
Number of neurons analyzed in each group are summarized in 
online methods, paragraph 18. 

2.   Are statistical tests justified as appropriate for every figure?  

Where (section, paragraph #)?

Yes, in the result sections and methods section appropriate tests 
are listed. Online methods section, paragraph 18 summarizes these.

a.    If there is a section summarizing the statistical methods in 
the methods, is the statistical test for each experiment 
clearly defined? 

Yes, online methods section, paragraph 18 summarizes these.

b.   Do the data meet the assumptions of the specific statistical 
test you chose (e.g. normality for a parametric test)?  

Where is this described (section, paragraph #)?

Yes, we substituted for non-parametric test wherever sample 
distribution failed the test of normality and this was detailed in 
methods (paragraph on statistical tests), paragraph 18. 
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c.    Is there any estimate of variance within each group of  data?  

Is the variance similar between groups that are being 
statistically compared?  

Where is this described (section, paragraph #)?

For one-way ANOVA, test for homogeneity of variances was done.  
It's is described in methods, paragraph 18. 

d.    Are tests specified as one- or two-sided?   Yes. In main text as well as methods.

e.    Are there adjustments for multiple comparisons?  Not required as ANOVA was significant. Multiple t-test was used for 
post-hoc tests.

3.    To promote transparency, Nature Neuroscience has stopped allowing 
bar graphs to report statistics in the papers it publishes. If you have 
bar graphs in your paper, please make sure to switch them to dot-
plots (with central and dispersion statistics displayed) or to box-and-
whisker plots to show data distributions.

Yes, dot plots with dispersion statistics are included.

4.    Are criteria for excluding data points reported?  

Was this criterion established prior to data collection?  

Where is this described (section, paragraph #)? 

 

Not applicable. Except Units with high SNR were used for 
subsequent analysis (see Methods paragraph 3).

5.    Define the method of randomization used to assign subjects (or 
samples) to the experimental groups and to collect and process data.   

If no randomization was used, state so.  

Where does this appear (section, paragraph #)?

For the optogenetic experiments, sometimes the non-stimulation 
experiments were done before stimulation or sometimes after 
optogenetic stimulation experiments. Hence this control was 
randomized, otherwise there was no blinding, as stated in online 
methods, paragraph 1. 

6.    Is a statement of the extent to which investigator knew the group 
allocation during the experiment and in assessing outcome included?   

If no blinding was done, state so.  

Where (section, paragraph #)?

No blinding was done, as stated in online methods, paragraph 1. 

7.    For experiments in live vertebrates, is a statement of compliance with 
ethical guidelines/regulations included?  

Where (section, paragraph #)?

Yes, Methods: paragraph 01

8.    Is the species of the animals used reported?  

Where (section, paragraph #)?

Yes, Methods: paragraph 01

9.    Is the strain of the animals (including background strains of KO/
transgenic animals used) reported?  

Where (section, paragraph #)?

Yes, Methods: paragraph 01

10.    Is the sex of the animals/subjects used reported?  

Where (section, paragraph #)?

Yes, Methods: paragraph 01
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11.  Is the age of the animals/subjects reported?  

Where (section, paragraph #)?

It's not reported. But all animals were adult male rats. They were 
procured at body weight ~250 gm (approximately 8 weeks age). 
Experiments were initiated within 5 days of delivery.

12.  For animals housed in a vivarium, is the light/dark cycle reported? 

Where (section, paragraph #)?

Yes, Methods paragraph 01

13.  For animals housed in a vivarium, is the housing group (i.e. number of 
animals per cage) reported? 

Where (section, paragraph #)?

Not reported but prior to surgery there were 2 rats/ cage. After 
surgery we put 1 rat/ cage due to water feeding restriction 
schedule.

14.  For behavioral experiments, is the time of day reported (e.g. light or 
dark cycle)?  

Where (section, paragraph #)?

Yes, Methods paragraph 01

15.  Is the previous history of the animals/subjects (e.g. prior drug 
administration, surgery, behavioral testing) reported? 

Where (section, paragraph #)? 

 

Yes, Methods paragraph 01 and 02

a.    If multiple behavioral tests were conducted in the same 
group of animals, is this reported? 

Where (section, paragraph #)?

Yes, Methods paragraph Animals and Behavior 

16.  If any animals/subjects were excluded from analysis, is this reported?  

Where (section, paragraph #)?

Not applicable

a.    How were the criteria for exclusion defined?  

Where is this described (section, paragraph #)?

NA

b.    Specify reasons for any discrepancy between the number of 
animals at the beginning and end of the study.   

Where is this described (section, paragraph #)?

NA

 Reagents

1.    Have antibodies been validated for use in the system under study 
(assay and species)? 

NA

a.    Is antibody catalog number given?  

Where does this appear (section, paragraph #)?

NA
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b.    Where were the validation data reported (citation, 
supplementary information, Antibodypedia)?  

Where does this appear (section, paragraph #)?

NA

2.    Cell line identity 

                 a.     Are any cell lines used in this paper listed in the database of    

                         commonly misidentified cell lines maintained by ICLAC and  

                         NCBI Biosample?  

                  Where (section, paragraph #)?

NA

b.    If yes, include in the Methods section a scientific 
justification of their use--indicate here in which section and 
paragraph the justification can be found.

NA

c.    For each cell line, include in the Methods section a 
statement that specifies: 

        - the source of the cell lines 

        - have the cell lines been authenticated? If so, by which   

          method? 

        - have the cell lines been tested for mycoplasma  

          contamination? 

Where (section, paragraph #)?

NA
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 Data availability
Provide a Data availability statement in the Methods section under "Data 

availability", which should include, where applicable: 
• Accession codes for deposited data 
• Other unique identifiers (such as DOIs and hyperlinks for any other 
datasets) 
• At a minimum, a statement confirming that all relevant data are 
available from the authors 
• Formal citations of datasets that are assigned DOIs 
• A statement regarding data available in the manuscript as source 
data 
• A statement regarding data available with restrictions 

    

See our data availability and data citations policy page for more 
information. 

   

Data deposition in a public repository is mandatory for: 

     a. Protein, DNA and RNA sequences 
     b. Macromolecular structures 
     c. Crystallographic data for small molecules 
     d. Microarray data 

Deposition is strongly recommended for many other datasets for which 
structured public repositories exist; more details on our data policy 
are available here. We encourage the provision of other source data 
in supplementary information or in unstructured repositories such as 
Figshare and Dryad. 

We encourage publication of Data Descriptors (see Scientific Data) to 
maximize data reuse.  

 Where is the Data Availability statement provided (section, paragraph 
#)? 

Data availability 
The data that support the findings of this study are available from 
the corresponding author upon request. 

 Computer code/software

Any custom algorithm/software that is central to the methods must be supplied by the authors in a usable and readable form for readers at the 
time of publication. However, referees may ask for this information at any time during the review process.

 1.   Identify all custom software or scripts that were required to conduct 
the study and where in the procedures each was used.

We have used open-source (for example Chronux, ensemble 
reactivation analysis), as well as in built and custom script in Matlab 
(for example statistical tests;,finding sleep epochs, performance 
gains, modulation depth, etc.)

2.   If computer code was used to generate results that are central to the 
paper's conclusions, include a statement in the Methods section 
under "Code availability" to indicate whether and how the code can 
be accessed. Include version information as necessary and any 
restrictions on availability.

A statement of code availability is included in Methods 
(Data and code availability sub-section) and specific code is 
available. We also make clear where publicly available code (for 
example Chronux toolkit) used in this study can be found.

 Human subjects
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1.    Which IRB approved the protocol?  

Where is this stated (section, paragraph #)?

NA for all topics in this section

2.    Is demographic information on all subjects provided?  

Where (section, paragraph #)?

3.    Is the number of human subjects, their age and sex clearly defined?  

Where (section, paragraph #)?

4.    Are the inclusion and exclusion criteria (if any) clearly specified?  

Where (section, paragraph #)? 

5.    How well were the groups matched?  

Where is this information described (section, paragraph #)?

6.    Is a statement included confirming that informed consent was 
obtained from all subjects? 

Where (section, paragraph #)?

7.    For publication of patient photos, is a statement included confirming 
that consent to publish was obtained? 

Where (section, paragraph #)?

 fMRI studies

For papers reporting functional imaging (fMRI) results please ensure that these minimal reporting guidelines are met and that all this 
information is clearly provided in the methods:

1.    Were any subjects scanned but then rejected for the analysis after the 
data was collected? 

NA for all topics in this section

a.    If yes, is the number rejected and reasons for rejection 
described?  

Where (section, paragraph #)?

2.    Is the number of blocks, trials or experimental units per session and/
or subjects specified?  

Where (section, paragraph #)?

3.    Is the length of each trial and interval between trials specified? 

4.    Is a blocked, event-related, or mixed design being used? If applicable, 
please specify the block length or how the event-related or mixed 
design was optimized.
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5.    Is the task design clearly described?  

Where (section, paragraph #)?

6.    How was behavioral performance measured?

7.    Is an ANOVA or factorial design being used?

8.    For data acquisition, is a whole brain scan used?  

If not, state area of acquisition. 

a.    How was this region determined?

9.  Is the field strength (in Tesla) of the MRI system stated? 

a.    Is the pulse sequence type (gradient/spin echo, EPI/spiral) 
stated?

b.    Are the field-of-view, matrix size, slice thickness, and TE/TR/
flip angle clearly stated?

10.  Are the software and specific parameters (model/functions, 
smoothing kernel size if applicable, etc.) used for data processing and 
pre-processing clearly stated?

11.  Is the coordinate space for the anatomical/functional imaging data 
clearly defined as subject/native space or standardized stereotaxic 
space, e.g., original Talairach, MNI305, ICBM152, etc? Where (section, 
paragraph #)?

12.  If there was data normalization/standardization to a specific space 
template, are the type of transformation (linear vs. nonlinear) used 
and image types being transformed clearly described? Where (section, 
paragraph #)?

13.  How were anatomical locations determined, e.g., via an automated 
labeling algorithm (AAL), standardized coordinate database (Talairach 
daemon), probabilistic atlases, etc.?

14.  Were any additional regressors (behavioral covariates, motion etc) 
used?

15.  Is the contrast construction clearly defined? 

16.  Is a mixed/random effects or fixed inference used? 

a.    If fixed effects inference used, is this justified?

17.  Were repeated measures used (multiple measurements per subject)? 
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a.    If so, are the method to account for within subject 
correlation and the assumptions made about variance 
clearly stated?

18.  If the threshold used for inference and visualization in figures varies, is 
this clearly stated? 

19.  Are statistical inferences corrected for multiple comparisons? 

a.    If not, is this labeled as uncorrected?

20.  Are the results based on an ROI (region of interest) analysis? 

a.    If so, is the rationale clearly described? 

b.    How were the ROI’s defined (functional vs anatomical 
localization)? 

21.  Is there correction for multiple comparisons within each voxel? 

22.  For cluster-wise significance, is the cluster-defining threshold and the 
corrected significance level defined? 

 Additional comments

     Additional Comments
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