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ABSTRACT
Motivation: Analysis of cellular signaling interactions is
expected to pose an enormous informatics challenge, per-
haps even larger than analyzing the genome. The complex
networks arising from signaling processes are traditionally
represented as block diagrams. A key step in the evolu-
tion toward a more quantitative understanding of signal-
ing is to explicitly specify the kinetics of all chemical reac-
tion steps in a pathway. Technical advances in proteomics
and high-throughput protein interaction assays promise a
flood of such quantitative data. While annotations, molec-
ular information and pathway connectivity have been com-
piled in several databases, and there are several proposals
for general cell model description languages, there is cur-
rently little experience with databases of chemical kinetics
and reaction level models of signaling networks.
Results: The Database of Quantitative Cellular Signaling
is a repository of models of signaling pathways. It is
intended both to serve the growing field of chemical-
reaction level simulation of signaling networks, and to
anticipate issues in large-scale data management for
signaling chemistry.
Availability: The Database of Quantitative Cellular Sig-
naling is available at http://doqcs.ncbs.res.in. Links to the
signaling model simulator, GENESIS/Kinetikit are at http://
www.ncbs.res.in/∼bhalla/kkit/index.html and are also pro-
vided from within the database. The database source code
is available under the GNU Public License.
Contact: bhalla@ncbs.res.in

INTRODUCTION
Signaling networks are the computational and control sys-
tem of the cell. The traditional view of signaling involves
transduction of chemical signals at the cell surface, and
their propagation via sequences of biochemical events in-
volving proteins and second messengers (Stryer, 2001). In
its broader sense, the cellular signaling network includes

∗To whom correspondence should be addressed.

genetic, cytoskeletal and cell trafficking elements. Quali-
tative analyses of such networks have been carried out us-
ing logical representations, for example in plant signaling
(Mendoza et al., 1999; reviewed in Genoud et al., 2001).
These studies are appropriate in many cases where gen-
eral connectivity is understood, but kinetic details are un-
certain. Mathematical and modeling methods are useful
in gaining further insights into cellular function (Tyson et
al., 2001). Several recent studies have undertaken a quan-
titative analysis of cellular signaling at the level of mass-
action kinetics of signaling pathways (Bhalla and Iyengar,
1999; Kuroda et al., 2001; Lamb, 1994) and genetic in-
teractions (Gillespie, 1977). Some studies include analy-
sis of the three-dimensional, stochastic and cellular me-
chanical function (Stiles et al., 1998; Shimizu et al., 2000;
Arkin and Ross, 1994). Current data sources, such as test-
tube biochemistry, are clearly poor approximations to cel-
lular conditions, nevertheless these are the best sources of
data we currently have. It is anticipated that more biologi-
cally detailed descriptions will become increasingly feasi-
ble with new experimental techniques (Teruel and Meyer,
2001; Kierzek, 2001; Voytik-Harbin et al., 2001). All such
quantitative descriptions have mass-action chemistry as a
common denominator. There is therefore a clear need for
developing data management and analysis systems appro-
priate for such data.

A number of initiatives have come into being as part
of this process. They can broadly be grouped into three
categories: databases, simulators and model description
languages. Although it is structured as a database, the
DOQCS project draws its inspiration especially from
simulation projects related to cellular signaling (e.g.
Bhalla and Iyengar, 1999). These studies have given rise to
many models incorporating detailed and explicit reaction
schemes and parameters. DOQCS is a resource for such
models that sets quantitative functional analysis of the
data as a central consideration for database development.
As this emphasis differs from other databases, a further
goal of the DOQCS project was to identify and fulfill
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distinctive database requirements as the dataset expanded
and usage patterns became clearer.

METHODS AND ALGORITHMS
DOQCS primarily contains explicit chemical-reaction
level models of signaling pathways, accompanied by
annotations, information about data sources, and pa-
rameter derivations. Most of these models are based
on published modeling studies, and the rest have been
developed specifically for DOQCS. Prior to database
entry, the functionality of each model is verified using
the Kinetikit/GENESIS simulator (Bhalla, 1998). This
initial filter ensures that all models are complete since all
parameters must be defined in order to replicate published
properties. Kinetikit features a database dump facility that
automatically converts data to SQL commands suitable
for upload to the database.

The data are stored using the MySQL database (http:
//www.mysql.com/) using PHP (http://www.php.net) as
an interface, (Welling and Thomson, 2001). Displays are
generated using the PHP interface to the GD library (http:
//www.boutell.com/gd/).

DESIGN AND IMPLEMENTATION
Data model
Chemical kinetic simulations are performed by converting
chemical equations of the general form

A + B
k f

↽⇀
kb

C + D

to systems of differential equations of the form

d[A]/dt = −k f [A][B] + kb[C][D]
and applying standard numerical integration methods
(Bhalla, 1998) to calculate the time evolution of these
reactions.

There are several ways of specifying chemical kinetic
models. Many models are reported in terms of concise
systems of differential equations, after applying mass
conservation rules to eliminate redundant equations (e.g.
Asthagiri and Lauffenburger, 2000). It is also common to
assume equilibrium relationships between molecules to
avoid solving multiple differential equations (Grzybowski
et al., 2000; Hecht et al., 1990). Some models have also
been described in terms of concentration-dependent rate
constants (Kholodenko, 2000). In distinction to these
abstractions and numerical simplifications, simulators
such as GENESIS/Kinetikit take a more chemically
detailed approach and require that every molecule,
reaction, and enzyme activity be explicitly specified
(Bhalla, 2002a). A key design decisions for DOQCS
was to retain this explicit chemical-level description for

all models. DOQCS is implemented in MySQL, which
is a relational database rather than an object-oriented
database. Therefore molecules, reactions and enzymes are
each represented in distinct tables. Each chemical object
in the simulation maps onto a row in the appropriate
table in DOQCS. For example, a protein kinase would be
represented as an entry in the molecule table, and each of
its catalytic reactions with distinct substrates as a distinct
entry in the enzyme table. A stoichiometric reaction such
as binding of regulatory subunit to catalytic subunit would
be represented as one entry in the reaction table, plus five
entries in the molecule table: one each for the substrate,
product, regulatory subunit catalytic subunit, and the
complex (Figure 1). This explicit mapping of table entries
to the basic chemical concepts of molecules and reactions
has several advantages:

• There is a direct correspondence between database
entries and experimentally measurable quantities such
as reactant concentrations.

• As there are no assumptions about equilibrium situa-
tions it is possible to apply reaction schemes to dy-
namic chemical situations on a time-scale shorter than
the equilibrium time-scale.

• Stochastic chemical systems can be represented
without any change to the database. It is sufficient to
re-interpret the entries for kinetic rates as probabilities
of reaction events. For example, a rate constant k f in
units of µM/sec could be scaled to # of molecules/sec
and this can be used to estimate reaction transition
probabilities. The reaction scheme and other entries in
the database would be unaffected.

• There is a logical extension into three-dimensional
reaction-diffusion systems by addition of spatial
distribution information. The chemical organization of
the tables need not change.

DATABASE STRUCTURE
The table structure of the database is designed to repre-
sent three levels of data description: the chemistry of indi-
vidual reactions, their organization into pathways, and the
administrative level pertaining to accession information
(Figure 1). As discussed above, there are separate tables
for molecules, reactions, and enzymes. Each entry in these
tables includes an identifier for the pathway and accession
to which it belongs. Other common fields are notes and
name. The remaining parameters are data-type specific.
Lists of substrates and products in reaction and enzyme
table entries specify chemical connectivity. Enzymes con-
tain a further entry to specify the parent molecule. This
is necessary because a specific protein may have several

409

 at U
C

SF L
ibrary on D

ecem
ber 2, 2013

http://bioinform
atics.oxfordjournals.org/

D
ow

nloaded from
 

http://bioinformatics.oxfordjournals.org/
http://bioinformatics.oxfordjournals.org/


S.Sivakumaran et al.
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Fig. 1. (a) Representation of chemical reaction scheme in database. An illustrative kinetic scheme for enzyme regulation is shown. It involves
five molecules, one reaction and one enzymatic activity. Each of the reactions, molecules and enzymatic activities maps onto one row of
their respective tables in the database. The reaction and enzyme tables refer to the reactant molecules through substrate and product lists. The
enzyme table has an additional entry for the parent molecule that possesses the enzyme activity. (b) Database structure. The accession table
contains administrative information about each database entry, and the accession number is a unique index for a particular accession. The
pathway table describes the structure of the pathway and also has a unique pathway number as an index. Multiple pathways may be grouped
within an accession. Each pathway entry contains an identifier for the accession to which the pathway belongs. Each chemical entry in the
reaction, molecule and enzyme tables has identifiers for the pathway and for the accession to which it belongs. Reactions and enzymes have
substrate and product lists pointing to molecule entries. Enzyme tables additionally store the name of the ‘parent’ molecule that possesses
the enzyme activity. The thesaurus table (not shown) maps molecule, reaction and enzyme names to canonical forms.

enzyme activities with different rates, acting on different
substrates.

An accessory table named ‘thesaurus’ has been imple-
mented because of the inconsistency in chemical naming
schemes among different models. This provides a lookup
for each molecule, reaction and enzyme name in terms of
a consistent single name.

The next level of organization is the pathway. This maps
closely onto individual pathway blocks in conventional
signaling pathway representations. Chemical entries (re-
actions, molecules and enzymes) are grouped into path-
ways through the pathway identifier in these tables. Like
the chemical tables, the pathway too contains accession,

name and notes fields. In addition it contains the pathway
reaction diagram.

The top level of the tabular hierarchy is the accession.
This primarily contains information pertaining to the ad-
ministration of accessions to the database. Currently two
accession types are implemented: individual pathways and
networks. In the former there is a single pathway model
in the accession. Such entries are intended as building
blocks for larger signaling models. Network accessions,
as the name implies, include several interacting signaling
pathways, each pointing to the same accession. These
entries raise an interesting organizational issue: how to
represent interactions between pathways? Incorporation
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Fig. 2. Map of molecular connectivity. The display indicates each
enzymatic action and reaction upstream and downstream of the
selected molecule, IP3(145) in this example. In addition it also
indicates any substrates and products if the selected molecule itself
is an enzyme (not present for IP3(145)). Each of the molecules
in the display can be selected by clicking, following which the
display shifts to display the selected molecule and its reactions.
Similar maps are generated for molecule-to-pathway and pathway-
to-pathway connectivity.

of interactions within individual pathways would be
confusing, as this would mean that one pathway con-
tains reactions and molecules pertaining to another. In
object-oriented terms, the pathways would no longer be
cleanly encapsulated, as they would have dependencies
on the contents of other pathways. The current solution,
borrowed from Kinetikit, is to define a basal pathway
‘kinetics’ that contains molecules and reactions that
interact with more than one pathway.

DATABASE INTERFACE AND UTILITIES
Searches
The multi-level organization of the data in DOQCS
necessitates a corresponding multi-level search approach.
The Search form in the web interface provides for
selection on any or all of the five key tables in the database:
Accession, Pathway, Molecule, Reaction and Enzyme.
The results are formatted appropriately for each table.
For example, search results for molecules, reactions and
enzymes provide links back to the accession and pathway.
However, enzymes are identified both by the name of
the enzyme activity as well as the name of the enzyme
molecule. This specific additional information has to be
presented for enzyme search results. Each level of the
search results includes the appropriate annotations for the
specific component being searched for, as this turns out to
be one of the most useful entries for interpreting searches.

Reaction and Pathway navigation
DOQCS provides a qualitative, graphical representation of
pathway interactions by displaying a map of connectiv-
ity of signaling pathways and molecules. In this utility, a
specified molecule or pathway is displayed with all incom-
ing and outgoing interactions from the database shown
graphically using arrows. The display can be set to three
levels of detail. At the most detailed level, molecule-to-
molecule connectivity information is extracted from the
database. All molecular inputs and outputs of a selected
molecule are displayed (Figure 2). Distinct arrows repre-
sent which molecules bind to, are formed from, or undergo
enzymatic conversion from the molecule of interest. The
connectivity map provides hyperlinks to each molecule
in the diagram, which facilitates navigation through the
chemistry of the signaling pathway. At an intermediate
level, the map displays molecule-to-pathway connectivity.
All pathway inputs and outputs to a given molecule are
displayed. Clicking on these inputs and output pathways
selects a key molecule in that pathway to be the new center
of the display. At the highest level, the database displays
pathway-to-pathway connectivity, again, each pathway is
accessible through a mouse click. A summary of infor-
mation and links to the detailed quantitative data in the
database is extracted and tabulated below the connectivity
map at each level of the hierarchy.

Comparisons
As discussed below, many pathway entries turn out to
be closely related. This necessitated the development of
various methods for comparing pathways. The current
comparisons are of three kinds: component, parameter,
and notes comparisons. The general approach is to match
up corresponding molecules, reactions and enzymes from
the respective pathways, calculate a similarity index for
each entry, and average over all matches (Figure 3).
The results are summarized graphically in a comparison
tree that depicts the similarity between different models
of a specific pathway. This tree represents very similar
pathway models in close proximity and less similar
models farther apart. Additional details regarding the
percentage of similarity and the number of matched
components are presented in tabular form below the
comparison tree map.

The calculations for similarity are done as follows.
Molecule names from each pathway are first converted
to a canonical form using the ‘thesaurus’ table. A similar
lookup is done for names of reactions and enzymes. This
ensures inclusion of chemically identical but differently
named entries in the comparison, which increases the
number of comparisons and improves the reliability of the
results. The fraction of matches among these canonical
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Fig. 3. Comparison tree generated to show the relatedness of several
MAPK pathway models in the database. The terminal branches
show the name of the pathway and its pathway identifier, and can
be clicked to bring up details of the selected pathway. The distance
between names indicates the difference between models, calculated
as discussed in the text.

names is then calculated:

Match % = 200 ∗ M/(nA + nB)

where M is the number of name matches between
pathway A and pathway B, having nA and nB components
respectively.

Next, parameter comparisons are performed on the
subset of components with matching canonical names.
The similarity index is given by the ratio of the smaller
to the larger value of the parameter.

Match % = 100 if p A = pB

= p A/pB if p A < pB

= pB/p A if pB < p A

Where pA is a parameter from pathway A and pB is the
corresponding parameter from pathway B.

Finally, the lengths of strings containing annotations for
each pathway are compared. These lengths are used as
parameters in the same manner as above. This comparison
is weighted at one-tenth the other two in the tree display.

Reports
In keeping with its primary motivation in facilitating
signaling model development, the report formats for
the database provide parameter listings in human as
well as machine-readable form. Currently four such
formats have been implemented: (1) A simple tabular
text listing of parameters. (2) A text listing including
parameter annotations, for supplementary material for
publications. (3) The Kinetikit model description file
format. (4) Differential equations. Converters for other
simulators and the CellML (http://www.cellml.org/) and
SBML (ERATO/SBML-Systems Biology Workbench)
(http://www.cds.caltech.edu/erato/) (Hucka et al., 2001;
Hucka, 2001) formats are planned.

RESULTS AND DISCUSSION
The database currently contains 26 accessions with
146 pathways and over 2500 molecules, reactions and
enzymes. Based on a literature search, we estimate that
the current size of the database represents approximately
one-third of the published models of signaling pathways
at the level of chemical kinetics.

This does not include a much larger set of metabolic
models, and published models of calcium dynamics in the
context of neuronal biophysics, that are outside the current
scope of the database.

At this time, all accessions are done in-house pending
development of a system for on-line entries and their
curation. It is anticipated that the data entry rate will
increase when the on-line system is implemented. We also
expect the number of available models from the literature
to increase rapidly with technological improvements in
parameter determination.

From our database and other studies (Juty et al., 2001)
it is apparent that the naming of molecules, reactions,
and enzymes is often inconsistent between models. On
the one hand modelers prefer to use abbreviations in
their models since formal molecular and enzyme names
are cumbersome. On the other hand, naming differences
complicate comparisons and may lead to ambiguity.
Often these ambiguities are deliberate: generic models
of Protein Kinase C (Bhalla and Iyengar, 1999) or
Adenylyl Cyclase (Bhalla, 2002a) in the database, are
conscious attempts to represent multiple isoforms with a
single, averaged model. There are a number of possible
solutions to naming inconsistencies. For example, part
of the annotation process could involve construction of
a matrix to identify equivalent molecules in different
pathway models. We have implemented this by creating a
thesaurus of canonical names, as previously discussed by
Juty et al. (2001), but this entails additional curation effort.
There are also possible heuristic approaches to matching
molecules, reactions and enzymes based on their positions
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in reaction graphs (Patel et al., 2001; Ettinger, 2002). Each
of these approaches presents drawbacks. For example, in
the MAPK pathway certain key phosphatases act upon
multiple molecules at multiple sites. When should such
reactions be grouped together for comparison, and when
should they be treated distinctly? Further, a phosphatase
target may be represented as a single molecule in some
models, but may exist in multiple states in other models.
How should the database handle the mapping of molecular
identity in such cases? Since DOQCS lays emphasis on
providing original models, the original naming is retained
in all cases. Some approaches to model comparisons are
discussed below.

The current dataset suggests a clear tendency for sig-
naling pathway models to be implemented in a number
of variants, sharing most pathways but having unique ver-
sions of others. Not surprisingly, there is also a tendency
for an evolutionary relationship between models devel-
oped over a period of time. For example, DOQCS cur-
rently contains eight versions of the MAPK pathway. Four
of these are identical except for annotations. Two are more
recent expanded models based on the earlier ones. The re-
maining two are distinct models based on original litera-
ture. How similar are these models? We have implemented
one approach to similarity calculation based on parameter
comparisons between equivalent molecules and reactions.
As discussed above, this works well with the addition of
a thesaurus (Juty et al., 2001) to establish correspondence
between model components. The similarity calculation ap-
proach breaks down when models describe fundamentally
different reaction schemes.

A possible better, longer-term approach is suggested
by detailed point-by-point comparisons between models
(Blüthgen and Herzel, 2001). The strategy in this approach
is to compare the functional behavior of the models rather
than their internal details. To the extent that functional
analysis and prediction is the key goal of model building,
this may be a more appropriate way of comparing models.
It would also sidestep many naming and model structure
issues already discussed. From the viewpoint of database
comparisons, this would require that the database either
includes model simulation results, or generates them
online, and performs comparisons between these results.
To our knowledge no database currently implements such
comparisons.

Signaling networks have become the focus of many
database projects, with a wide diversity of goals. The
TRANSPATH database (Schacherer et al., 2001) has
extensive searchable maps of signaling pathways to
follow signaling interactions. One of the objectives of the
database is to facilitate simulations, and its data structures
can accommodate chemical reaction details. The bulk of
the data in TRANSPATH at the current time is block-
diagram rather than chemical-reaction level. The related

database CSNDB (Takai-Igarashi et al., 1998) also has
molecular information but not described in terms of reac-
tion kinetics. The databases DIP (Xenarios et al., 2002),
GeneNet (Kolpakov et al., 1998) and BIND (Bader and
Hogue, 2000) describe molecules involved in pathways,
and provide reaction maps, but most do not have details
on reaction kinetics. Biocarta (http://www.biocarta.com)
has attractive annotated diagrams of many signaling
pathways at the block-diagram level. GeneNet currently
has two web-enabled genetic models and a schema for
implementing kinetic models, but is not at this time a
repository of signaling models. The database of the Al-
liance for Cellular Signaling (AFCS) has well-annotated
protein lists and a selection of signaling maps, and has the
stated goal of including quantitative details on signaling
(Gilman, 2000) (http://www.cellularsignaling.org/). EMP
(Selkov et al., 1996) and BRENDA (Schomburg et al.,
2002) are excellent sources of enzyme kinetics, but in-
clude little or no regulatory details and lack the context of
complete pathway models with upstream and downstream
interactions.

The Virtual Cell project (Loew and Schaff, 2001) has
several signaling models accessible on-line. The numer-
ical model descriptions are embodied in a ‘Mathemati-
cal Model’ using the Virtual Cell Model Description Lan-
guage (VCMDL). The current emphasis in the Virtual Cell
project is simulations rather than maintaining a repository
of signaling models. Several databases provide protein in-
teraction data, e.g. KEGG (Kanehisa et al., 2002), ASPD
(Valuev et al., 2002) and SPiD (Hoebeke et al., 2001).
Though such data are becoming increasingly quantitative,
they are not sufficient to formulate reaction schemes and
complete kinetics for signaling pathways.

DOQCS is therefore distinctive in being a repository
of functional simulation models, based on chemical
kinetics. The search and comparison facilities that have
grown out of this specialization are also different from
other databases. DOQCS does not currently provide
simulator functionality, and is therefore not comparable
to any of several simulator packages, e.g. V-Cell (Loew
and Schaff, 2001), DBsolve (Juty et al., 2001), Jarnac
(Sauro, 2000), E-Cell (Tomita et al., 1999), MCell (Stiles
et al., 1998) and Kinetikit (Bhalla, 1998). However,
the models in DOQCS may be useful for these sim-
ulators as conversion tools appear. The XML-based
model description languages SBML (Hucka et al.,
2001) (http://www.cds.caltech.edu/erato/) and CellML
(http://www.cellml.org) offer the prospect of facilitating
this interconversion.

Biological models are rapidly evolving out of the
‘word model’ phase into more quantitative, predictive
and useful simulations. Data remains a limiting factor.
Most current data is rather qualitative, and appropriate
modeling methods have been developed for such data
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(reviewed in Genoud et al. (2001)). Quantitative modeling
of signaling pathways is currently a rather small niche in
biology, but many stimuli are now converging to accelerate
the process of quantification of cell biology, and thus
greatly expand the scope for signaling models. Most
current chemical kinetic models of signaling interactions
incorporate a limited degree of compartmentalization, but
exclude spatial detail. The schema for DOQCS is currently
at this level. There are clear trends to include more
cellular detail in simulators and signaling models. Such
details include spatial information, stochasticity in single-
molecule interactions, cytoskeletal effects and cellular
mechanics, and integration of all these with genetic
interactions (Gillespie, 1977; Arkin et al., 1998; Stiles et
al., 1998). In addition to these model details, it would
also be desirable to extend the DOQCS schema to support
reaction modifiers, more general rate laws, and stimulus
descriptions designed to replicate specific experiments.

Beyond greater biological realism in models there is
a clear trend towards closer integration of database,
simulator, and model description formats. XML-based
languages seem to be one approach to facilitating this
integration (Achard et al., 2001; Lamont, 2001; Williams,
2002) but there are currently very few simulators that can
read these model description languages (e.g. DBsolve6,
Juty et al. (2001)). It is also currently difficult to combine
a large number of individual pathway models into a
signaling network model. New simulators and object-
oriented descriptions of signaling networks are starting to
address these challenges (Bhalla, 2002b; ECELL (Tomita
et al., 1999), MCell (Stiles et al., 1998) (http://www.
mcell.psc.edu)). The current DOQCS project is envisioned
as one step in this highly desirable convergence of
technologies where predefined individual pathway models
selected from a database can be linked together using
graphical methods and simulated in an appropriate cellular
spatial context.
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